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GAGING FOR SPC: 

KEEPING IT SIMPLE 
 
 After all that has been written about 
Statistical Process Control (SPC) in the past few 
years, I am continually surprised at how often 
shop owners tell me they would like to do SPC, 
but they’re “just too small,” or they “can’t afford 
all that fancy equipment.”  There seems to be a 
mistaken yet growing perception out there: 1) 
that SPC is a lot more complicated than it is, and 
2) that you need a computerized system on line 
just to get into it.   
 
 This is unfortunate because small shops 
can often benefit the most from SPC and there 
really is no reason they should not.  The simple 
fact is, you don’t need a computer and you don’t 
need to be a statistical genius to do SPC.  I know 
this latter for a fact, because I understand it.  All 
you need, really, is an indicating gage, a pad and 
a pencil.  So if you’re one of those who is still 
hesitant about charting, try this easy-to-follow 
recipe for small shop SPC: 
 
 Before you start, you do have to 
understand a little bit about the process itself.  
But this is not difficult.  Bear in mind that the 
basic principles of SPC were developed back in 
the ’30s -- long before computers were invented -
- and have not really changed since.  So don’t be 
intimidated by all the bells and whistles.  An X/R 
chart then was the same as an X/R chart now.  
You don’t need to understand all the theory 
behind the process, just the basics of frequency 
distribution and charting will do for a start, and 
there are many guides to help do this.  (In fact, 
Federal Products published one back in 1945 
which is currently in its 14th printing and is still 
in use!)  What you’re basically looking at is 
taking a few simple measurements, averaging 
them, then recording the results.   
 
 Next, get the process in place.  This 
involves three steps.  First, look at the part you’re 
going to measure.  What are its important 
dimensions and what part of the process controls 
them?  Here is what you want to measure and 

where you want to start the process.  But keep it 
simple.  Start with a single measurement until 
you get the feel for it.   
 
 Second, look at the gaging equipment you 
are going to use.  Make sure you follow all the 
gaging basics we’ve talked about in this column.  
Make sure it is the right gage for that type of 
measurement, and that you follow the ten-to-one 
rule for resolution (to measure 0.001” tolerance, 
you need a gage with at least 0.0001” resolution).  
You should also run a series of Gage Repeat and 
Reliability (GR&R) studies to make sure your 
measurements are as accurate as possible.  
Remember, whatever “analysis” you do can only 
be as accurate as the measurements you start 
with.    
 
 The final step in setting up is to 
benchmark your machining process.  You need 
to find out, simply, if your machine is capable of 
holding the tolerances or control limits you 
require.  Your SPC guide can help you do this. 
 
 Now you’re ready to gather data.  There 
are many sophisticated systems available to 
facilitate this process.  However, most trainers 
agree you are much better off starting manually.  
With automated data collection systems, the 
operator often feels left out of the process: it 
happens without him.  He doesn’t need to think 
about it, and therefore makes no effort to 
understand it.  This is bad because, ultimately, 
it’s not SPC that controls your quality, it’s the 
operator.  If he doesn’t understand the process, 
he is unable to use it. 
 
 Charting manually, on the other hand, 
puts him immediately in contact with the 
process.  He is able to see that there is a 
relationship between what he’s doing and what 
the charts show.  He sees that his process 
changes and that the charts provide a prediction 
of how it changes.  He is then able to control it.  
He sees his wheel is wearing, for example, and 
knows when, and when not, to compensate.  
Charting manually -- or at least visually -- 
empowers the operator, and that, ultimately, is 
what SPC is all about. 
 



Section G 2

 The other advantage of manual charting 
is that you can use just about any type of 
indicating gage, so long as it is accurate.  Since 
you probably already have some in your shop, 
your SPC investment cost is reduced to the 
Manual, the paper and the pencil.  Who knows, 
you may even already have the pencil. 
 
 On the downside, manual charting is 
tedious and time consuming, and subject to error.  
Whenever an operator measures and records 
manually, he has two chances for error: he can 
observe wrong and he can record wrong.  This is 
where you may want to consider a digital 
indicator, which can give you several advantages.  
First, you can eliminate error by gathering and 
recording data electronically -- as well as 
interfacing with whatever computerized system 
you may want to put on line.  Second, it makes it 
quicker and easier to collect the readings: all the 
operator has to do is measure and press a foot 
switch.  Battery operated gages provide a back-
up in case your computer system does go down 
and, most importantly, these gages still provide 
the operator with an on-site reading so he can 
monitor his process. 
 
 That’s it: simplified SPC for the small 
shop.  Start small, take it one step at a time, and 
keep your operators involved.  And remember, 
SPC is not a thing you buy, it’s a thing you do. 
 
 

BEDROCK S.Q.C. 
 
 Statistical Quality Control has been in use 
since the 1930s, when it was performed with 
paper, pencil, and maybe a slide rule.  As such, it 
was originally somewhat time consuming, and it 
required a fairly high level of care and 
understanding on the part of its practitioners.  
SQC got a big boost in the 1970s and '80s, when 
electronic gages, data loggers, and PCs began to 
proliferate.  Suddenly, untrained line inspectors 
could easily perform the necessary calculations, 
without really understanding the process. 
 
 Many instructors still believe, however, 
that inspectors and machine operators should 
learn to do SQC manually before they plug in 

their data loggers, on the general principle that 
people who understand what they're doing tend 
to do a better job.  Thus, we'll be looking at some 
of the basics of SQC for the next month or two.  
The rules can apply to any dimensional gaging 
procedure in a high-volume production 
application.  
 
 All operations that produce features to 
dimensional tolerances involve variation.  
Variation cannot be eliminated, but it can be 
controlled so that it remains within acceptable 
limits.  SQC uses the laws of probability to 
reliably monitor and control a process.  By 
inspecting variation in a small sample of 
production, it is possible to draw inferences for 
the entire lot. 
 
 Let's use the following simple example: 
the feature to be inspected is an OD on a rod, and 
the specification is 0.375" ±0.005".  For our 
sample, we select 35 parts at random from a 
certain segment of a production run.  (Let's not 
worry, for the moment, about how we arrive at 
that figure.  Suffice it to say that samples need 
rarely be greater than 50 parts.) 
 
 The first "statistical" procedure is to find 
the smallest and the largest measurements, then  
subtract one from the other.  This is the "range," 
which we might express as R = 0.008".  Next, we 
find the average of all the measurements (the 
sum of the measurements divided by the number 
of measurements in the sample), which we 
express as the "X-bar" value, as in X = 0.377". 
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 These very simple procedures provide 
important information.  First, they tell us whether 
all the parts in the sample are in tolerance, and 
how much of the tolerance range (0.010") the 
variation (0.008") consumes.  And secondly, they 
show the relationship between the average value 
and the specification.  The average of a sample 
may lie exactly on the part specification, but the 
range of the sample may be broader than the 
tolerance range, so that many parts lie beyond 
both the upper and lower tolerance limits.  On 
the other hand, the range of the sample may be 
smaller than the range of the tolerance limits, but 
the average may be skewed so far from the 
specification that the entire sample falls outside 
one of the tolerance limits. 
 
 The next step is to chart the data on a 
histogram.  A range of measurement values is 
divided into equally spaced categories, and each 
measurement is placed in the appropriate 
category.  If distribution is "normal," the 
resulting Frequency Distribution Curve will have 
the familiar bell shape.  The "mode"—the 
category containing the largest number of data 
points—will be the same as the average in a 
normal distribution.  Distribution curves that are 
not bell-shaped may indicate a problem in the 
manufacturing process.  For example, if the 
curve shows a dip where the mode normally 
appears, it might indicate looseness in the setup 
or the machine tool. 
 
 The histograms show four examples of 
normal distribution.  In A, the range is too wide, 
indicating that a large percentage of production 
falls outside the tolerance limits.  In B, the range 
is equal to the tolerance limits: all the items in 
the sample pass inspection, but there is a 
statistical probability that some parts in the 
production run will exceed the limits.  In both 
cases, one would want to reduce the range of 
variation. 
 
 The range of curve C is significantly less 
than the tolerance range, and falls entirely within 
the specifications: there is a probability of very 
few bad parts in the run.  In D, the range is 
acceptable, but because the average is displaced 
to one side, a significant number of sample parts 

fall outside of tolerances.  Some means must be 
found to shift the average while maintaining the 
range. 
 
 We'll continue with SQC next month, 
when we look at control limits and standard 
deviations. 
 

 
GAGING STATISTICS—PART 

DEUX 
 
 We have seen how a histogram, showing 
dimensional variation in a random sample of 
parts, can be used to determine whether a process 
is under adequate control.  Both the range (R) 
and the arithmetic mean (X) of the sample must 
be monitored to make sure that parts consistently 
remain in tolerance.  Let's continue on this topic. 
 
 Deviation, as a statistical term, tells how 
much a given piece of data diverges from the 
mean.  (For example, if the mean value of a 
sample is 0.010", and the part in question 
measures 0.012", deviation is +0.002".)  
Standard deviation, when designated as S, is a 
measure of how much the values of all the 
individual items in the sample diverge from the 
mean value of the sample.  Standard deviation 
can also be designated as s (a small Greek 
sigma), which is an estimate, based on a sample, 
of how much the values of the individual items 
in the total population from which the sample 
was drawn will diverge from the mean value of 
the population.   
 
 We won't go into how to calculate S or s 
here (the methods appear in any basic textbook 
of statistics, or you can just punch up the values 
on a scientific calculator).  Suffice it to say that 
once you've found the value of s, further standard 
deviations are, by definition, simply multiples of 
s.  (e.g., two standard deviations = 2 x s.)  Some 
of the data in a sample will fall beyond one 
standard deviation from the mean.  The second 
standard deviation tells us how much additional 
deviation exists among those parts that do not 
fall within the first standard deviation; the third 
standard deviation tells how much deviation 
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exists among parts that don't fall within the first 
two deviations, etc. 
 
 Standard deviations can be displayed on a 
distribution curve as pairs of positive and 
negative bands on either side of the mean value, 
as shown in the figure.  In any random sample 
showing a normal, bell-curve distribution, one 
standard deviation (i.e., one positive and one 
negative band) will encompass roughly 68% of 
the values in the population; two standard 
deviations will encompass roughly 95.5%; and 
three standard deviations will encompass roughly 
99.75% of the workpieces.  It always works out 
this way, because of the laws of random 
distribution and statistics: wider bell curves 
naturally exhibit larger standard deviations, and 
narrower bell curves exhibit smaller ones, and 
the two are always in proportion to one another. 
 
 By comparing the width of the standard 
deviation bands with the specified tolerance 
limits, it is possible to calculate, from the 
sample, how many bad parts will be produced for 
the production lot from which the sample was 
drawn.  For example, if the tolerance limits are 
equal to plus or minus three standard deviations, 
and the mean of the sample is perfectly centered 
on the specification, one could expect 25 bad 
parts out of every 10,000 produced (100% - 
99.75%).  It's simply a matter of calculating the 
mean and three standard deviations, and 
comparing the results against the tolerance 
specification.  If the "_3 Sigma" spread falls 
entirely within the tolerance limits, as in the 
figure, then the process appears to be under 
control.  If part of the spread falls above or below 
the tolerance limits, then the process must be 
adjusted to make the bands narrower (i.e., reduce 
variation), change the location of the mean, or 
both. 
 
 In any precision manufacturing operation, 
dimensional variation is very tightly controlled, 
and the sigma limits are monitored to keep them 
within the tolerance limits.  The span can be 
compared to the tolerances in various ways.  This 
is known as process capability, and can be 
discussed in future columns. 
 

 In summary: it is possible, based on the 
laws of statistical probability, to effectively 
monitor a process and maintain high levels of 
quality control using a sampling method.  In 
most applications, this tends to be far more cost 
effective than 100% inspection.  Rather than 
drawing histograms, one can calculate the 
"control limits" — i.e., the upper and lower 
boundaries of the standard deviation bands, and 
the acceptable range of variation of the mean — 
mathematically. 
 
 

MORE ON GAGING STATISTIC 
 
 A histogram, showing dimensional 
variation in a random sample of parts, can be 
used to determine whether a process is under 
adequate control.  Both the range (R) and the 
arithmetic mean (X) of the sample must be 
monitored to make sure that parts consistently 
remain in tolerance.  Let’s continue on this topic.  
Deviation, as a statistical term, tells how much a 
given piece of data diverges from the mean.  (For 
example, if the mean value of a sample is .010”, 
and the part in question measures 0.012”, 
deviation is +.002”.) Standard deviation, when 
designated as S, is a measure of how much the 
values of all the individual items in the sample 
diverge from the mean value of the sample.  
Standard deviation can also be designated as σ 
(the small Greek letter sigma), which is an 
estimate, based on a sample, of how much the 
values of the individual items in the total 
population from which the sample was drawn 
will diverge from the mean value of the 
population (see Figure 1). 
 
 We won’t go into how to calculate S or σ 
here (the methods appear in any basic textbook 
of statistics, or you can just punch up the values 
on a scientific calculator).  Suffice it to say that 
once you have found the value of σ, further 
standard deviations are, by definition, simply 
multiples of σ.  (For example, two standard 
deviations = 2 x σ.)  Some of the data in a 
sample will fall beyond one standard deviation 
from the mean.  The second standard deviation 
tells us how much additional deviation exists 
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among those parts that do not fall within the first 
standard deviation; the third standard deviation 
tells how much deviation exists among parts that 
don’t fall within the first two deviations, and so 
on. 
 
 Standard deviations can be displayed on a 
distribution curve as pairs of positive and 
negative bands on either side of the mean value, 
as shown in the figure. 
 
 In any random sample showing a normal, 
bell-curve distribution, one standard deviation 
(that is, one positive and one negative band) will 
encompass roughly 68 percent of the values in 
the population; two standard deviations will 
encompass roughly 95.5 percent; and three 
standard deviations will encompass roughly 
99.75 percent of the workpieces.  It always works 
out this way, because of the laws of random 
distribution and statistics:  wider bell curves 
naturally exhibit larger standard deviations, and 
narrower bell curves exhibit smaller ones, and 
the two are always in proportion to one another. 
 
 By comparing the width of the standard 
deviation bands with the specified tolerance 
limits, it is possible to calculate, from the 
sample, how many bad parts will be produced for 
the production lot from which the sample was 
drawn.  For example, if the tolerance limits are 
equal to plus or minus three standard deviations, 
and the mean of the sample is perfectly centered 
on the specification, one could expect 25 bad 
parts out of every 10,000 produced (100 percent - 
99.75 percent).  It is simply a matter of 
calculating the mean and three standard 
deviations, and comparing the results against the 
tolerance specification.  If the “+ 3 sigma” spread 
falls entirely within the tolerance limits, as in the 
figure, then the process appears to be under 
control.  If part of the spread falls above or below 
the tolerance limits, then the process must be 
adjusted to make the bands narrower (that is, 
reduce variation), change the location of the 
mean, or both. 

 
 In any precision manufacturing operation, 
dimensional variation is very tightly controlled, 
and the sigma limits are monitored to keep them 
within the tolerance limits.  The span can be 
compared to the tolerances in various ways.  This 
is known as process capability, and can be 
discussed in future columns. 
 
 In summary:  it is possible, based on the 
laws of statistical probability, to effectively 
monitor a process and maintain high levels of 
quality control using a sampling method.  In 
most applications, this tends to be far more cost 
effective than 100 percent inspection.  Rather 
than drawing histograms, one can calculate the 
“control limits”-- that is, the upper and lower 
boundaries of the standard deviation bands, and 
the acceptable range of variation of the mean--
mathematically.  
 


