Inspecting Geometric Tolerances Using a Roundness/ Cylindrical Geometry Measuring Instrument

PRODUCTIVITY QUALITY INC

15150 25th Avenue North Suite 200 Plymouth MN 55447 763.249.8130 / 800.772.0620 fax763.249.8150

Datum

center

Tolerance area

⊥ Squareness

Degree of deviation of a linear or planar geometry from the geometric line or plane perpendicular to the datum line or the datum plane

/ Circular Runout

Degree of displacement of the object surface from the specified position or to the direction specified at a given position, if an object that should have a surface rotating on the datum axis or an object that should be a circular plane perpendicular to the datum axis is rotated on the datum axis

11 Total Runout

Degree of displacement of the object surface to the specified direction, if an object that should have a cylindrical surface rotating on the datum axis or an object that should be a circular plane perpendicular to the datum axis is rotated on the datum axis

Relationship between the Amplitude Transmissibility and Number of Undulations of

to Variations of Filter Cutoff Value Roundness is greatly affected by a variation of filter cutoff value. It is necessary to set up the filter appropriate for evaluation purpose.

Evaluation Method of Roundness

Least Square Circle

(LSC) Method

Define such a reference circle

the deviation from a circular

To evaluate the roundness of a circular object using the radius method, it is necessary to define its center clearly. There are four kinds of evaluation methods of roundness as follows:

Minimum Zone Circles

(MZC) Method

try is a minimum. Ing the center coordinate circle as the center of the geometry, roundness is as the radial difference and circles which are and circumscribed e circular geometry and atric to it.	positioned, so that the radial difference between the two circles is a minimum. Assuming the center coordinate of the circles as the center of the circular geometry, roundness is defined as the radial difference between the two circles.	circle as that of the circular geometry, draw a circle which is concentric to the circular geometry and inscribed with it. Roundness is defined as the radial difference between the two circles.	
Rmin Rmin	Rmax	Rmin H	
ol indicating the value of roundness: ΔZq	Symbol indicating the value of roundness: ΔZz	Symbol indicating the value of roundness: ΔZc	

Symbol indicating the value of roundness: ΔZi Traceability System to Roundness/

Circle (MCC) Method

Assuming the center of this

Stylus Tip

Maximum inscribed

Circle (MIC) Method

Determine the inscribed circle

geometry, draw a circle which

geometry and circumscribed with it. Roundness is defined a

the radial difference between

the two circles.

Assuming the center of this

circle as that of the circular

on a circular geometry.

Undulation Components Included in a Measurement Result Graph

www.gagesite.com

Compliments of

1 upr component
This component is derived from the eccentricity of a geometric object from the rotation center The amplitude of 1 upr component varies depending on the leveling adjustment even

The amplitude of the first harmonic component varies depending on the leveling adjustment even on the same geometric object.

2 upr component

(1) Insufficient leveling adjustment at the setup of a geometric object on the measuring instrument.(2) Circular runout due to incorrect mounting of a geometric object on the rotation axis

of the machine tool in the machining process. (3) The elliptic geometry of an object machined according to its design, such as a piston.

3 to 5 upr components These components are derived from the following deformation of a geometric

Deformation due to extremely tight holding of the object with a three-claw chuck at measurement (Care should be exercised for measurement of soft materials, thin parts, etc.) (2) Deformation at the time of releasing a part from chucking due to stress accumulated in the part by the influence of chucking in the machining process

5 to 15 upr components These components are derived from unstable factors in the machining method, machining process, etc.

• Adjustment prior to Measurement

Centering

To prevent measurement errors due to eccentricity, centering must be performed so that the center of a geometric workpiece is sufficiently aligned with the rotation axis of the measuring instrument.

Leveling

The inclination of a geometric workpiece axis with respect to the rotation axis may cause an elliptic error. Leveling must be performed so that the workpiece axis is sufficiently parallel to the rotation axis.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Inclination Figure: Inclination and elliptic error

PTB Calibration PTB Calibration NMI PTB Calibration PTB Calibration PTB mutual Corporation <Rotational accuracy> Axial direction Radial direction Magnification Calibration Kit Roundness/Cylindrical Geometry Reference Measuring Instrument *PTB: Physikalisch-Technische Bundesanstalt (Germany)

Cylindrical Geometry Measuring

Instruments (Traceability System to PTB*)