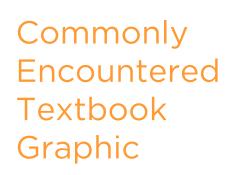


CMM Measurement Uncertainties: Applications & Case Studies

Kim D. Summerhays Technical Director MetroSage

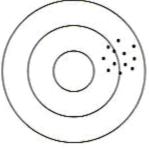
Topics

- Task-Specific Measurement Uncertainty
- Gauge R&R vs. Measurement Uncertainty
- Ways to Assess Measurement Uncertainty
- An Automotive Case Study
- CMM Measurement Traceability
- Optimizing Tolerance Schemes
- Economics of Measurement Uncertainty

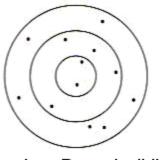

METROSAGE Task-Specific CMM Measurement Uncertainty

- Specific to a particular measurand.
- Specific to a particular level of confidence.
- Sample Statement: "The uncertainty of the diameter of this nominal 10-mm diameter hole, measured with this particular CMM under these specific conditions is ±0.004 mm at 95% confidence."

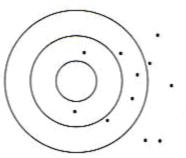
Topics


- Task-Specific Measurement Uncertainty
- Gauge R&R vs. Measurement Uncertainty
- Ways to Assess Measurement Uncertainty
- An Automotive Case Study
- CMM Measurement Traceability
- Optimizing Tolerance Schemes
- Economics of Measurement Uncertainty

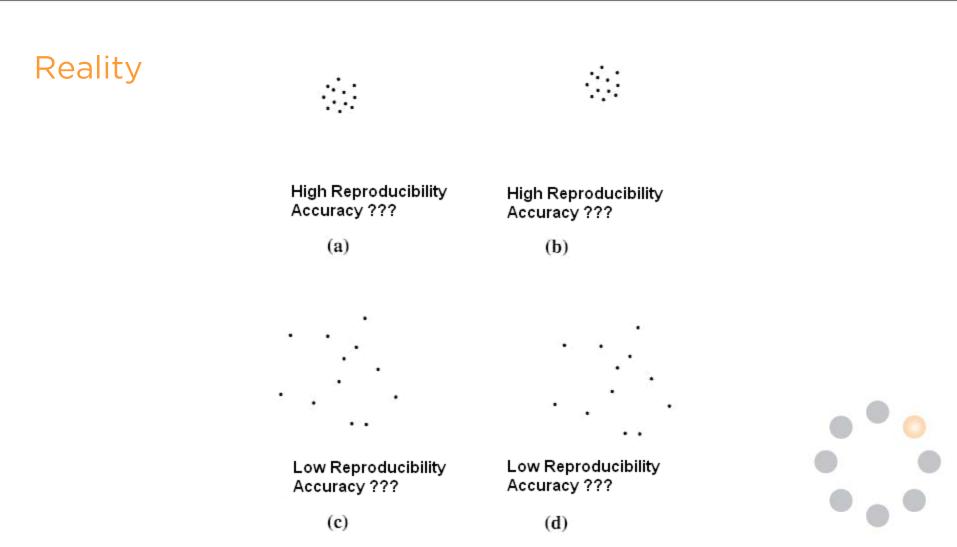
Reproducibility vs. Accuracy


High Reproducibility High Accuracy

High Reproducibility Low Accuracy


(a)

(c)

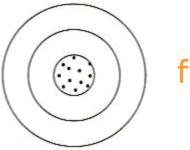

Low Reproducibility High Accuracy

Low Reproducibility Low Accuracy

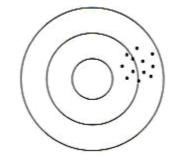
Reproducibility vs. Accuracy

METROSAGE Gauge Repeatability & Reproducibility (GR&R)

"A concept to insure stabile measurements where a single person gets the exact same results each and every time they measure and/or collect data measurements."


- Six Sigma SPC's Quality Control Dictionary and Glossary

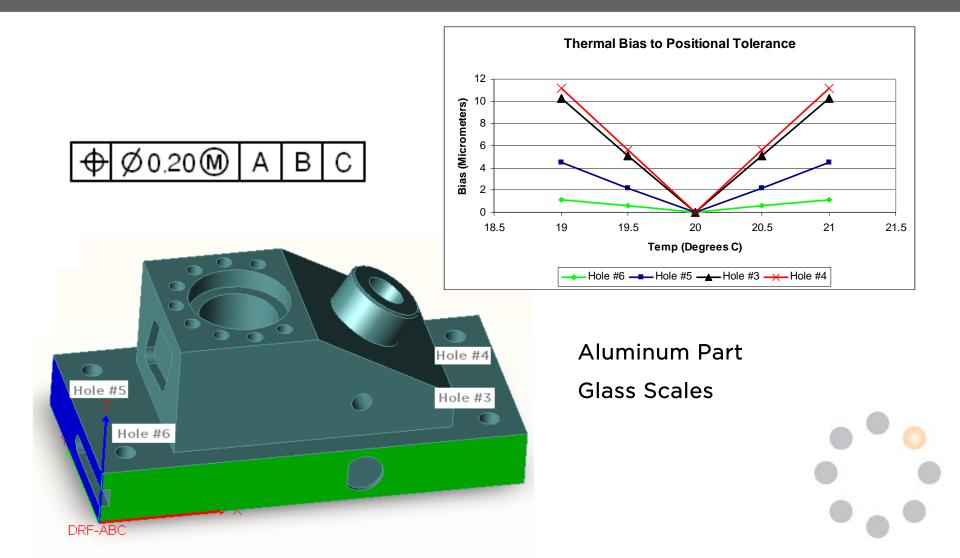
METROSAGE Gauge Repeatability & Reproducibility (GR&R)


Assesses *Reproducibility*, but not *Accuracy*:

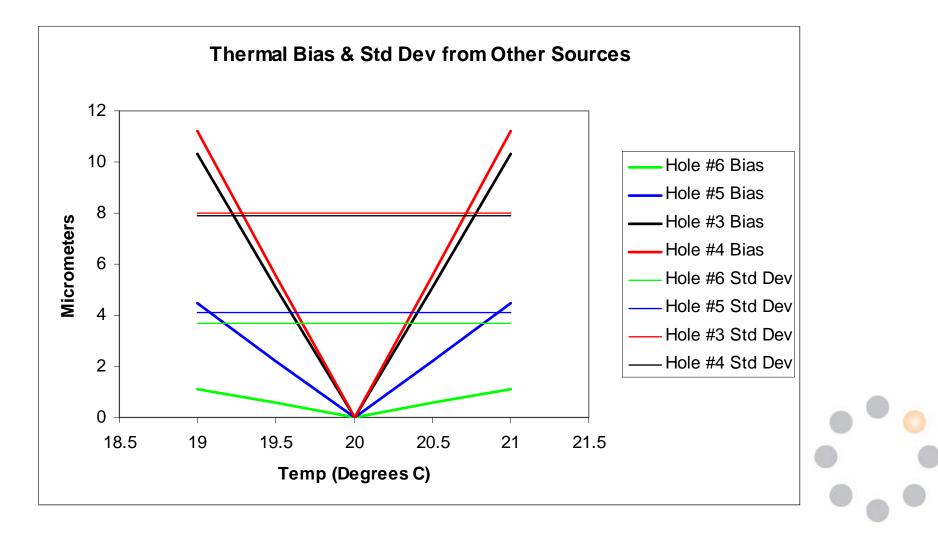
Distinguishes from

but cannot distinguish

from

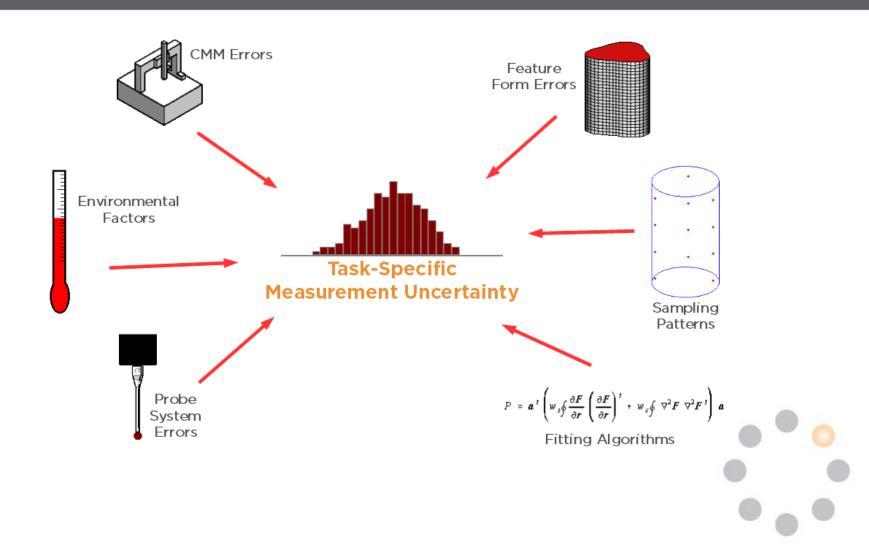


Bias in CMM Measurements


Some Sources:

- Repeatable Geometric Errors of CMM Axes
- Repeatable Probe Errors (e.g. Over-travel)
- Uncorrected Thermal Expansion of Scales
- Uncorrected Thermal Expansion of Part
- Sampling Strategy Inadequacies
- Wrong Point-Fitting Algorithm

Thermally Induced Bias


METROSAGE Thermal Bias Compared to Std Dev from Other Sources

Topics

- Task-Specific Measurement Uncertainty
- Gauge R&R vs. Measurement Uncertainty
- Ways to Assess Measurement Uncertainty
- An Automotive Case Study
- CMM Measurement Traceability
- Optimizing Tolerance Schemes
- Economics of Measurement Uncertainty

METROSAGE CMM Measurement Influence Quantities

Methods to Estimate Measurement Uncertainty (ISO 15530 draft)

- <u>Sensitivity Analysis</u> aka "Uncertainty Budgeting"; estimating various contributions
- Expert Judgment "best-guess" estimate
- <u>Substitution</u> repeated measurement of calibrated master part
- <u>Simulation</u> modeling and simulating the measurement process, including the errors
- <u>Measurement History</u> full range of measurements of part throughput

Uncertainty Method Scorecard for 3-Dimensional Metrology

The MetroSage Solution:

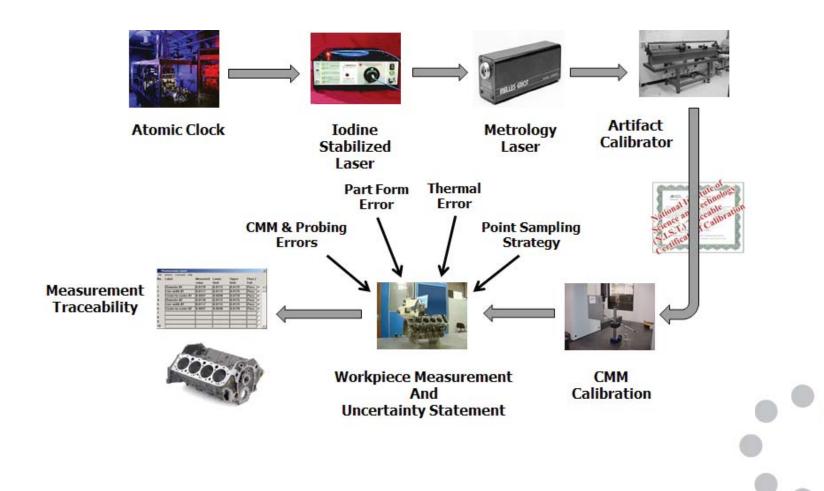
Topics

- Task-Specific Measurement Uncertainty
- Gauge R&R vs. Measurement Uncertainty
- Ways to Assess Measurement Uncertainty
- An Automotive Case Study
- CMM Measurement Traceability
- Optimizing Tolerance Schemes
- Economics of Measurement Uncertainty

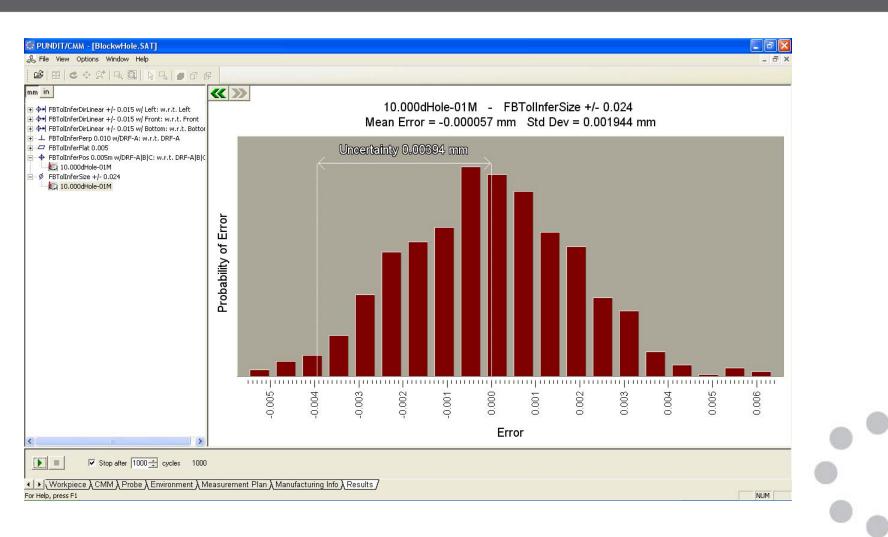
Traceability

"The property of the result of a measurement or the value of a standard whereby it can be related to stated references, usually national or international standards. through an unbroken chain of comparisons all having stated uncertainties."

-ISO VIM 6.10



Proof of CMM Measurement Traceability

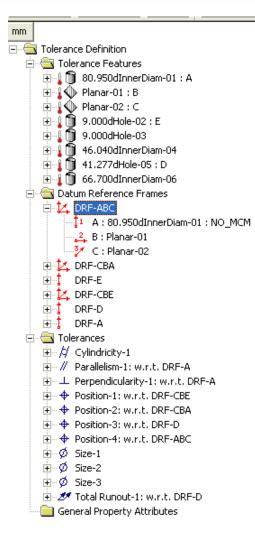

The Problem:

Demonstrating measurement traceability to national or international standards

CMM Traceability Chain

PUNDIT/CMM

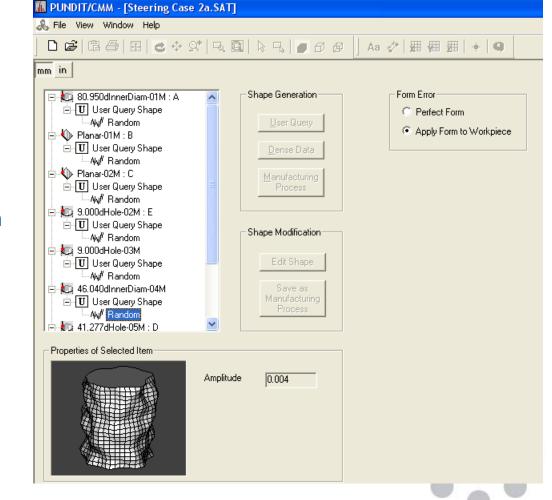
METROSAGE Task-Specific Measurement Uncertainty Report


Units:	mm			
		Tolerance	Uncertainty	%Tol Consumed
10.000dHole-10				
	Pos0.125mADsB: w.r.t. DRF-ADsB	0.125	0.0155	12.4% *
	Size +0.05 -0.00	0.05	0.0107	21.4% **
10.000dHole-11				
	Pos0.125mADsB: w.r.t. DRF-ADsB	0.125	0.015	12.0% *
	Size +0.05 -0.00	0.05	0.0108	21.6% **
13.000dHole-03				
	Pos0.10mABC: w.r.t. DRF-ABC	0.1	0.0299	29.9% **
	Size +/- 0.05	0.1	0.0109	10.9% *
13.000dHole-04				
	Pos0.10mABC: w.r.t. DRF-ABC	0.1	0.0318	31.8% ***
	Size +/- 0.05	0.1	0.011	11.0% *
BlockAngledTop				
	Angularity0.07: w.r.t. DRF-A	0.07	0.008	11.5% *
	Prof0.10ADsB: w.r.t. DRF-ADsB	2.54	0.0229	0.90%

•

Topics

- Task-Specific Measurement Uncertainty
- Gauge R&R vs. Measurement Uncertainty
- Ways to Assess Measurement Uncertainty
- An Automotive Case Study
- CMM Measurement Traceability
- Optimizing Tolerance Schemes
- Economics of Measurement Uncertainty


An Automotive Case Study

A Steering Case: Features, Datums & Tolerances PUNDIT/CMM - [Steering Case 2a.SAT] 🤽 File View Camera Tol Defn Tol Feat DRF Tolerance Gen Prop Attrib Product Info. Solids Tools Window Help X 🖻 🖻 3 ? 888888 🙆 ⊞ 🕵 🗣 🗗 🚱 Aa mm 🖃 🔄 Tolerance Definition 🗄 🔄 Tolerance Features 🗄 📲 🛍 80.950dInnerDiam-01 : A 🗄 📲 🌒 Planar-01 : B 🛉 📲 🌒 Planar-02 ; C 9.000dHole-02 : E 🛉 📲 🗻 9.000dHole-03 🗄 📲 🗻 46.040dInnerDiam-04 🗄 📲 🛍 41.277dHole-05 : D 🗄 👖 🗻 66.700dInnerDiam-06 🗟 Datum Reference Frames E Z DRF-ABC 1 A : 80.950dInnerDiam-01 : NO MCM 🔏 B : Planar-01 V C : Planar-02 🕂 🚺 DRF-CBA DRF-E 🗄 🚺 DRF-CBE DRE-D 🗄 🕇 DRF-A 🗟 Tolerances 🗄 💋 Cylindricity-1 😟 🖉 Parallelism-1: w.r.t. DRF-A ⊕ ⊥ Perpendicularity-1; w.r.t. DRF-A 主 🔶 Position-1: w.r.t. DRF-CBE 🕂 🔶 Position-2; w.r.t. DRF-CBA 主 🔶 Position-3: w.r.t. DRF-D 🗄 🔶 Position-4: w.r.t. DRF-ABC 🗄 🧭 Size-1 🕂 🗹 Size-2 ⊨ Ø Size-3 🕂 🍼 🖅 Total Runout-1: w.r.t. DRF-D 🧰 General Property Attributes

• Workpiece & CMM & Probe & Environment & Measurement Plan & Manufacturing Info & Results /

METROSAGE Feature Form Error Definitions

• <u>Style</u>:

Random surface error

• Amplitudes:

Feature-dependent: 4 to 11 μ m

CMM Definition

• <u>Style</u>:

Moving Bridge

• <u>Dimensions</u>:

X: 550mm Y: 500mm Z: 400mm

• Error Model:

Simulation by Constraints

Model Source Data:

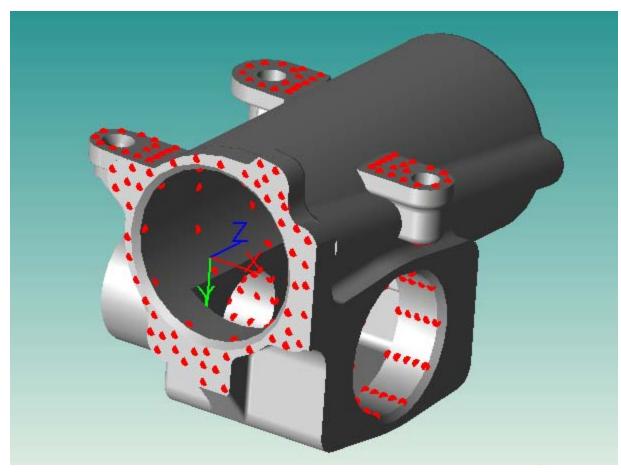
ASME B89 4.1

🛄 PUNDIT/CMM - [Steering C	ase 2a.SAT]
🚴 File View Window Help	
□ ☞ @ @ ■ • <	→ \$* द, 國 ▷ द, ● ♂ 母] Aa 💸 囲 囲 囲 +
mm in <custom></custom>	Edit CMM Database View Disclaimer
Orientation Minin X = +A ▼ 0 Y = +B ▼ 0 Z = +C ▼ 0	num Extent Maximum Extent 550 500 400 Moving bridge
Error Model Perfect Machine Simulation By Constraints Full Parametric Specification Model Data Source ASME B89 4.1 USAF Calibration Test ISO 10360	n Linear Accuracy X 1.2 ± μm Y 1.2 ± μm Z 1 ± μm Volumetric Performance 3.1 ± μm Offset Volumetric Performance 0 ± ppm Repeatability 0.2 ± μm

Probe Definition

• <u>Styli</u>:

Fixed Orientation, Multi-Tip


- <u>Dimensions</u>:
 - All stylus lengths 80mm
- Error Model:
 - Switching Probe
- <u>Model Source Data:</u> ISO 10360

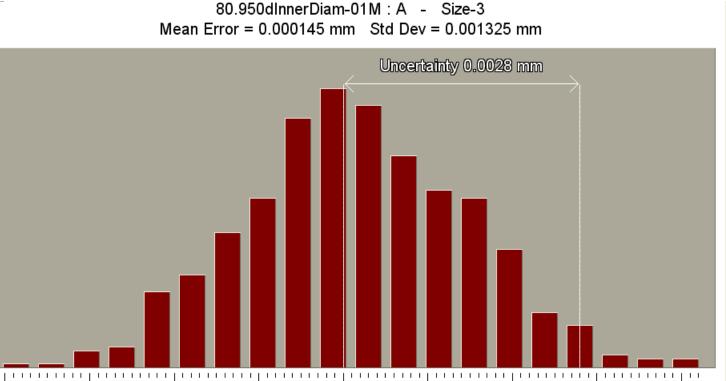
n_in_	f13 cuto	-			T 1
Probe Configuration Fixed Orientation Single Tip Fixed Orientation Multi-Tip Articulated Single Tip	4	s length of tip ' s length of tips	1: 2 through 5:	80 m 80 m	
	ISO.10360.5 Pe	rformance Tes	t for Fixed Orier	ntation Multi-Ti	o Prob
Probe Error Model	Stylus Length (mm)	MPE _{ML}	MPE _{MS}	MPE _{MF}	
			MPE _{MS}	MPE _{MF}	μm
C Perfect Probe	Stylus Length (mm)	MPE _{ML}			
Perfect Probe Piezoelectric Probe	Stylus Length (mm) 10	MPE _{ML}	0.1	0.5	μm
 Perfect Probe Piezoelectric Probe Switching Probe 	Stylus Length (mm) 10 20	MPE _{ML} 1.7 0	0.1	0.5	μm μm
Perfect Probe Piezoelectric Probe Switching Probe Performance Evaluation Test	Stylus Length (mm) 10 20 30	MPE _{ML} 1.7 0 0	0.1	0.5 0 0	μm μm μm
 Perfect Probe Piezoelectric Probe Switching Probe 	Stylus Length (mm) 10 20 30 50	MPE _{ML} 1.7 0 0 0 0	0.1 0 0 0 0 0	0.5 0 0 0	μm μm μm

$$\begin{split} \mathsf{MPE}_{\mathsf{ML}} &= \mathsf{Largest} \text{ range of center coordinates for the 5 25-point spheres} \\ \mathsf{MPE}_{\mathsf{MS}} &= \mathsf{Deviation of the 125-point sphere fit diameter from calibrated di \\ \mathsf{MPE}_{\mathsf{MF}} &= \mathsf{Range of residuals of the 125-point sphere fit} \end{split}$$

Sampling Point Specifications

- Apply probing points to features
 - Manual selection
 - Automated regular patterns
- Regular patterns can be uniform or staggered, rows & columns or by point density
- Edge offsets can be specified
- Points falling into voids are discarded automatically

Results & Analysis


-0.002

-0.001

- For each toleranced feature characteristic, PUNDIT/CMM reports: • Mean Error
- (i.e. bias in measurement)
- Standard
 Deviation
- Expanded Uncertainty at 95% certainty

-0.004

-0.003

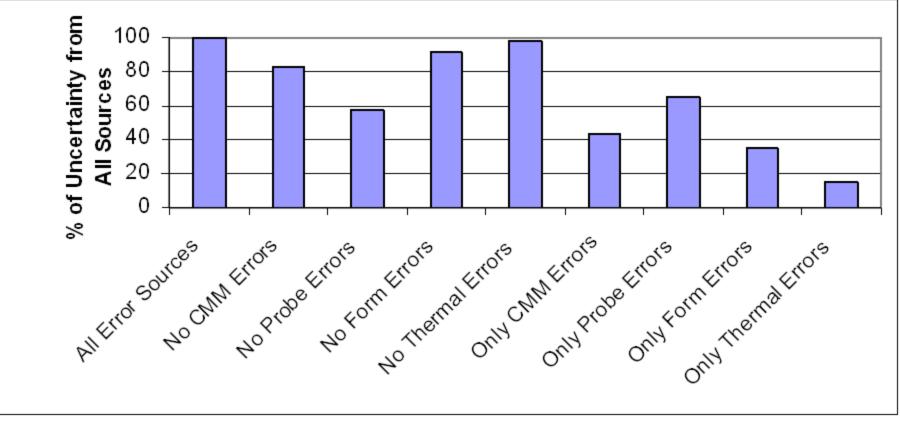
0.000

Error

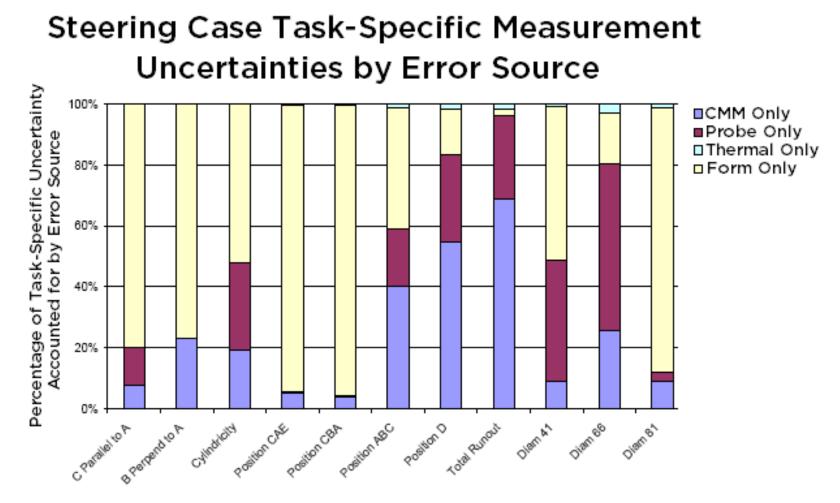
0.001

0.002

0.003


0.004

Task-Specific


Measurement Uncertainty Analysis

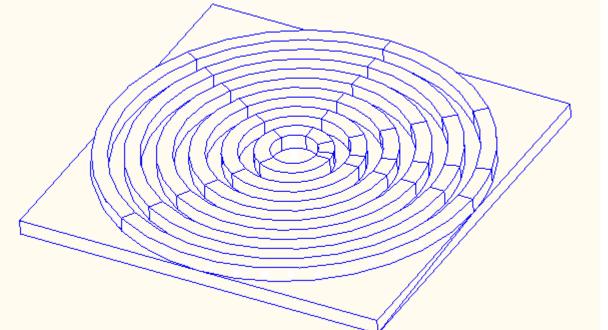
Diameter Uncertainty for Nominal 66.7mm ID Cylindrical Feature

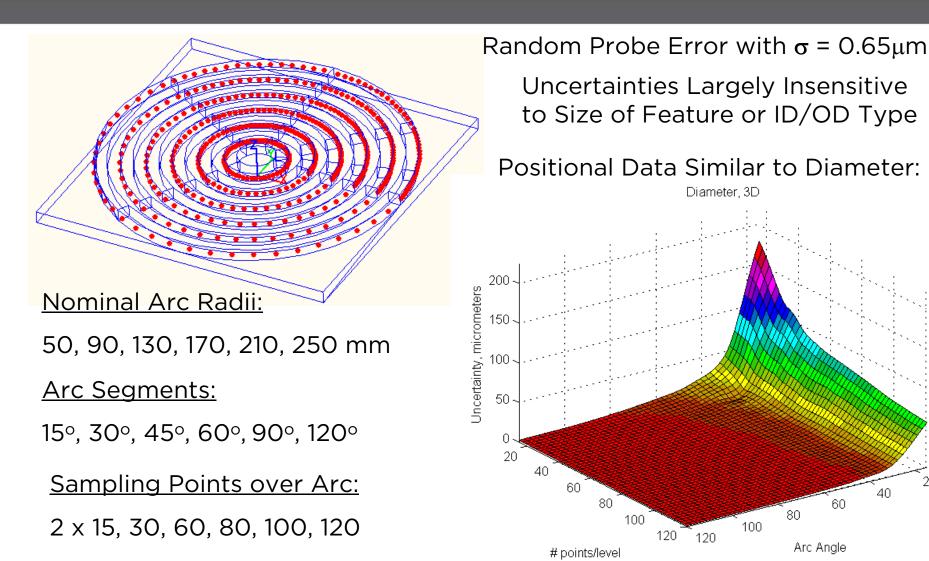
Task-Specific

Measurement Uncertainty Analysis

Feature Characteristic

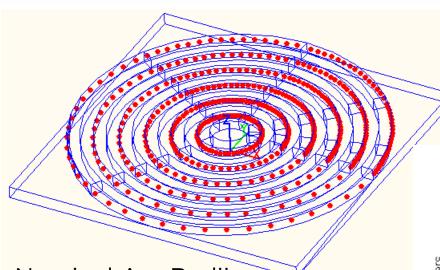
Topics


- Task-Specific Measurement Uncertainty
- Gauge R&R vs. Measurement Uncertainty
- Ways to Assess Measurement Uncertainty
- An Automotive Case Study
- CMM Measurement Traceability
- Optimizing Tolerance Schemes
- Economics of Measurement Uncertainty


Arc Feature Measurement

Virtual Part

Concentric Rings of Outside Diameters from 100 mm to 500 mm and Inside Diameters from 60 mm to 460 mm Sliced into Arcs of 15°, 30°, 45°, 60°, 90° and 120°


Size Controlled by Diameter **Location/Orientation by Position**

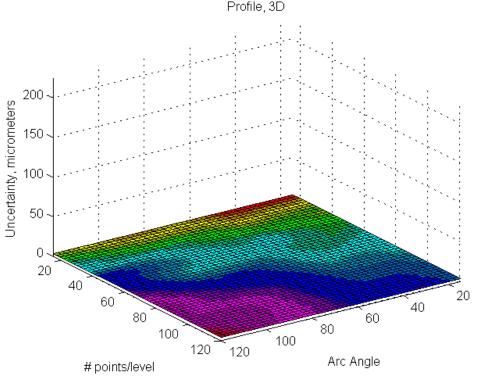
20

40

METROSAGE Size, Location & Orientation Controlled by Profile

Nominal Arc Radii:

50, 90, 130, 170, 210, 250 mm

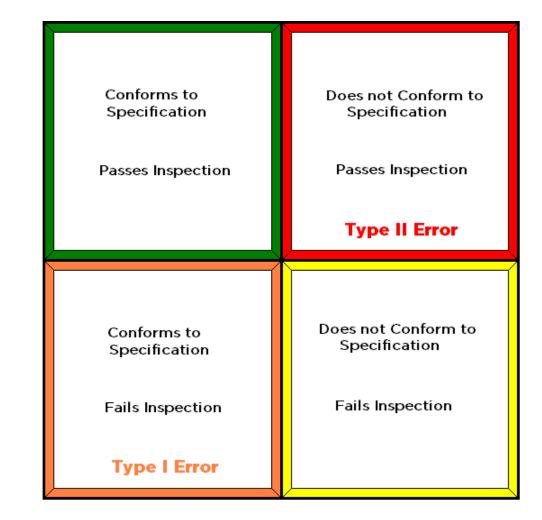

Arc Segments:

15°, 30°, 45°, 60°, 90°, 120°

<u>Sampling Points over Arc:</u> 2 x 15, 30, 60, 80, 100, 120 Random Probe Error with σ = 0.65μm Uncertainties Largely Insensitive

to Size of Feature or ID/OD Type

Profile Uncertainties in 3-4 μm range



Topics

- Task-Specific Measurement Uncertainty
- Gauge R&R vs. Measurement Uncertainty
- Ways to Assess Measurement Uncertainty
- An Automotive Case Study
- CMM Measurement Traceability
- Optimizing Tolerance Schemes
- Economics of Measurement Uncertainty

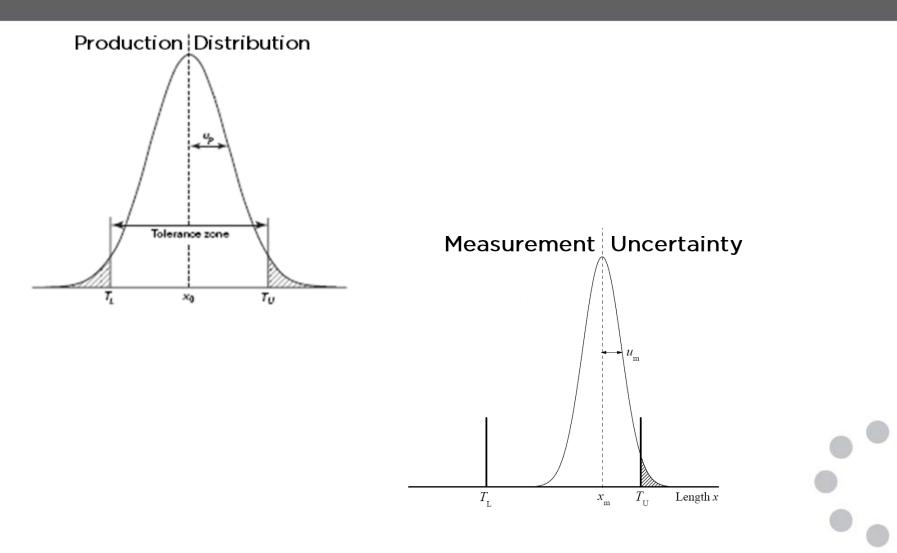
Production & Measurement

4 Possible Outcomes:

Production & Measurement

3 out of 4 Yield Losses

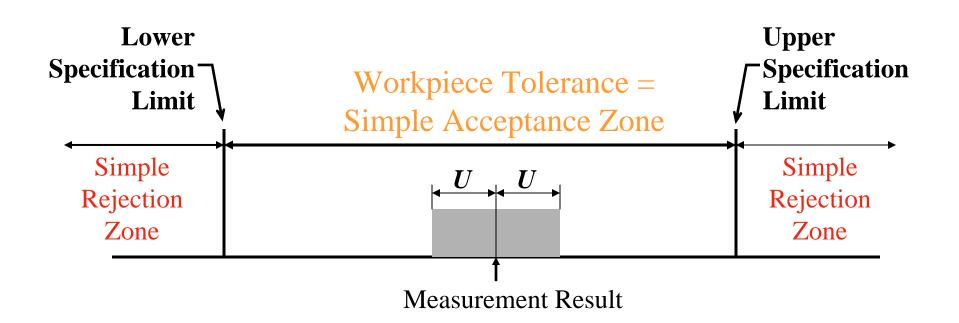
Does not Conform to
Specification
Passes Inspection
Type II Error
LOSS
LUSS Does not Conform to
Specification
Fails Inspection

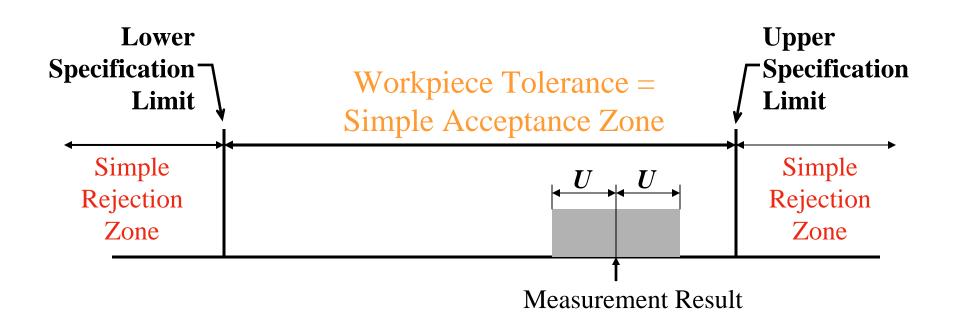

Production & Measurement

% CHANCE ? Conforms to Specification Passes Inspection	% CHANCE ? Does not Conform to Specification Passes Inspection
	Type II Error
% CHANCE ? Conforms to Specification Fails Inspection Type I Error	% CHANCE ? Does not Conform to Specification Fails Inspection

METROSAGE Economics of Measurement Uncertainty

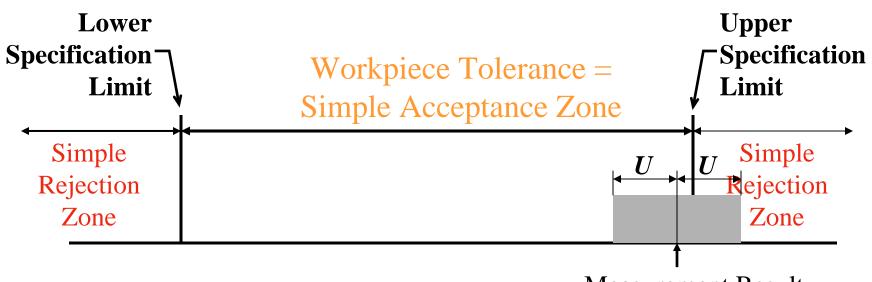
- Factors for Consideration:
- Production Capability
- Measurement Capability
- Cost of Rejecting a Good Part (Type I Error)
 Cost of Accepting a Bad Part (Type II Error)


METROSAGE Production & Measurement Capabilities


Decision Rule without Regard to Measurement Uncertainty



METROSAGE Factoring in Measurement Uncertainty



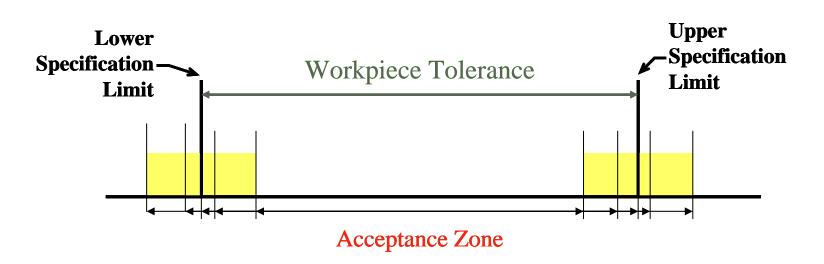
METROSAGE Factoring in Measurement Uncertainty

METROSAGE Factoring in Measurement Uncertainty

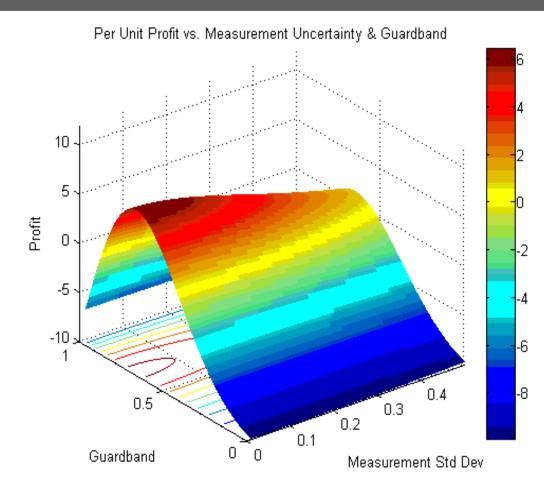
Measurement Result

Decision Rule: Stringent Acceptance

Less chance of accepting a bad part Greater chance of rejecting a good part


Decision Rule: Stringent Rejection

Greater chance of accepting a bad part


Less chance of rejecting a good part

METROSAGE Economic Optimization of Decision Rules Guardband Selection

Which Decision Rule Maximizes Profits?

Measurement Uncertainty & Profitability

100 mm diameter shaft **Tolerance** $\pm 1 \text{ mm}$ **Production Process Centered Production Std Dev. 0.33 mm Measurement Unbiased Cost of unit production: \$7.50** Sales Price: \$30 **Expense of release of bad** part (Type II Error): \$300

Profit Maximized when each Guardband = 0.65 mm

Topics

- Task-Specific Measurement Uncertainty
- Gauge R&R vs. Measurement Uncertainty
- Ways to Assess Measurement Uncertainty
- An Automotive Case Study
- CMM Measurement Traceability
- Optimizing Tolerance Schemes
- Economics of Measurement Uncertainty