

47th Annual Training Seminar May 30th, 2016

New automated composite comparison score for bullet analysis using high-resolution optical 3D surface metrology

Cristina Cadevall Sensofar Tech & CD6

SUMMARY

Overview

- Methodology
- Results
- Future
- Conclusions

C. Cadevall and R. Artigas, PhD in Optics

Centre of Sensors, Instruments and Systems Development (CD6 - UPC) (Barcelona, Spain)

+ D. Martinez at al Sensofar Tech SL (Barcelona, Spain)

+ B. Henderson (+ D. Stella)

Sensofar LLC (US)

SENSOFAR

OVERVIEW Research environment

Surface metrology experts

TEC

SENSOFAR

METROLOGY

C. Cadevall and R. Artigas, PhD in Optics

Centre of Sensors, Instruments and Systems Development (CD6 -

UPC) (Barcelona, Spain)

+ D. Martinez at al Sensofar Tech SL (Barcelona, Spain)

+ B. Henderson (+ D. Stella) Sensofar LLC (US)

- Photonics Europe (2016) "Three-dimensional measurements with a novel technique combination of Confocal & Focus Variation with a simultaneous scan"
- AAC (2104) "Using Optical areal measurement methods to assess the surface shape and texture on aluminum anodized surfaces" -BEST PAPER AWARD

SENSOFAR

OVERVIEW Research environment

Firearms forensics researchers

D. McClarin, E. Smith and J. Stephenson FBI Labs (Quantico, Virgina)

A. Zheng et al

NIST - Engineering Physics Division (Gaithersburg, Maryland)

A. Garrido

Guardia Civil

(Barcelona, Spain)

SENSOFAR

Open Forensics Metrology Consortium (OpemFMC - International)

OVERVIEW Research environment

Firearms forensics researchers

D. McClarin, E. Smith and J. Stephenson FBI Labs (Quantico, Virgina)

A. Zheng et al **NIST - Engineering Physics Division** (Gaithersburg, Maryland)

NIST Ballistics Toolmark Database J. Hamby test

A. Garrido

Guardia Civil

(Barcelona, Spain)

SENSOFAR

Open Forensics Metrology Consortium (OpemFMC - International)

OVERVIEW Motivation

Handwritten manuscripts

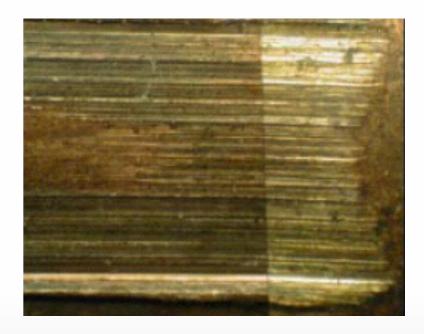

Gutenberg movable type printing 1450

OVERVIEW Motivation

Handwritten manuscripts

Gutenberg movable type printing 1450

speed & consitency

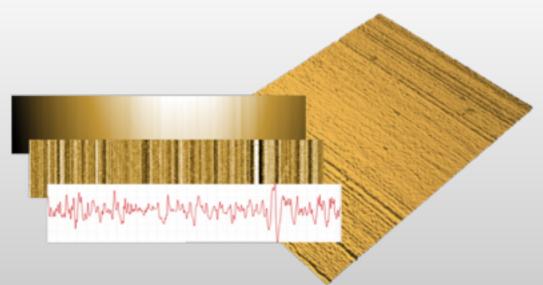


OVERVIEW High resolution optical 3D surface metrology

Crime labs

SENSOFAR

- Optical (side-by-side) comparison microscopes.
- Lighting conditions are the same (or nearly so).
- Automated ballistics identification systems
 - Digitized optical microscope images.
 - Lighting conditions are not guaranteed to be equal.
 - Not very successful with lead bullets or bullets with differing compositions


OVERVIEW

SENSOFAR

High resolution optical 3D surface metrology

- Bullet signatures are 2D or 3D tool marks (geometrical microtopographies by nature)
- Direct measurement and correlation of 2D surface profiles and 3D surface topographies have been proposed for ballistic identification
- Automation using 3D measurements is more successful in the analysis of a wider range of bullet types

[1] TV Vorburger, J Song, N Petraco. 'Topography measurements and applications in ballistics and tool mark identifications, Surf. Topogr.: Metrol. Prop. 4 (2016) 013002

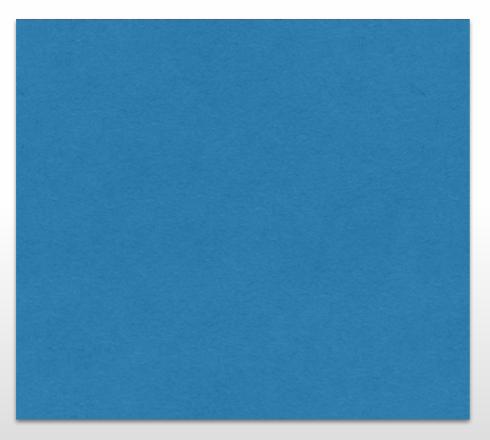
OVERVIEW Qualitative 3D analysis

OVERVIEW Qualitative 3D analysis

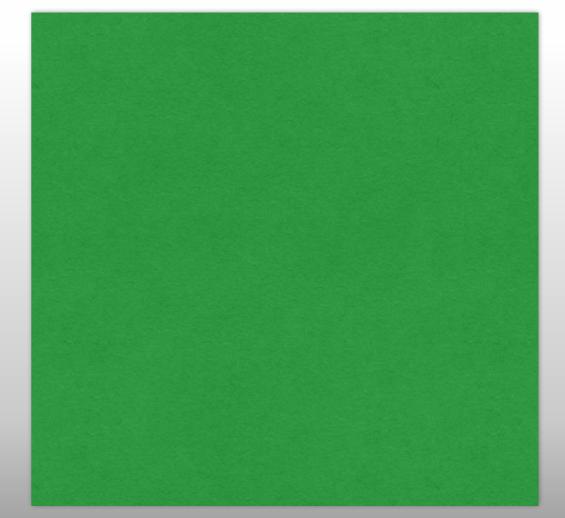
OVERVIEW Quantitative 3D analysis

Measure degree of similarity - public domain parameters - 2D & 3D

- Cross-correlation function (CCF) [2]
- Signature difference (D_s) [2]
- Full surface or individual characteristics?
 - Congruent Matching Cells (CMC): CCF_{max}, "theta", x, y
 for every cell + number of matching cells (CMC
 number) [3]
 - Principal component analysis (PCA) [4]

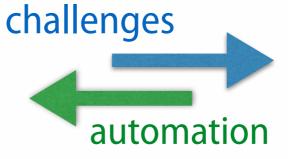


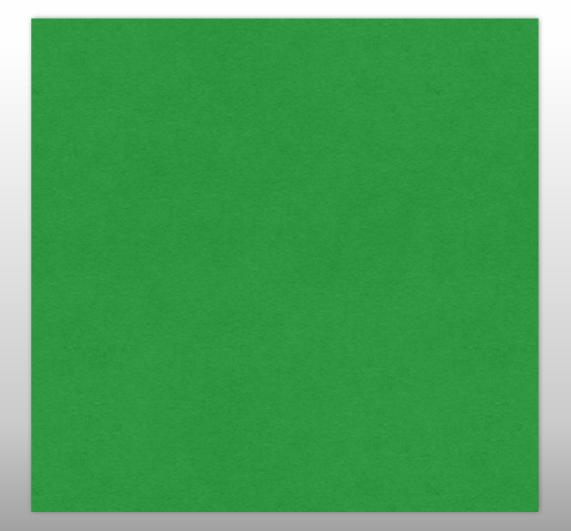
[2] J Song, TV Vorburger. 'Proposed bullet signature comparisons using autocorrelation functions, Proc 2000 NCSL (Toronto)
[3] J Song 2013 Proposed NIST ballistics identification system (NBIS) using 3D topography measurements on correlation cells AFTE J. 45 184-94
[4] Petraco N D K et al 2013 Estimates of striation pattern identification error rates by algorithmic methods AFTE J. 45 235-44


SENSOFAR

Firearms and tool marks experts & scientists

Surface metrology experts

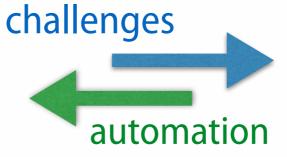


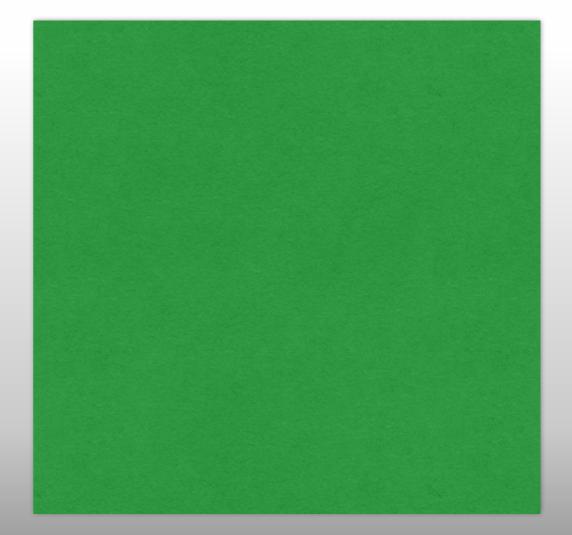


Firearms and tool marks experts & scientists

Surface metrology experts

Thousands of comparisons of 3D measurements of land surfaces

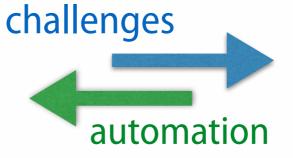


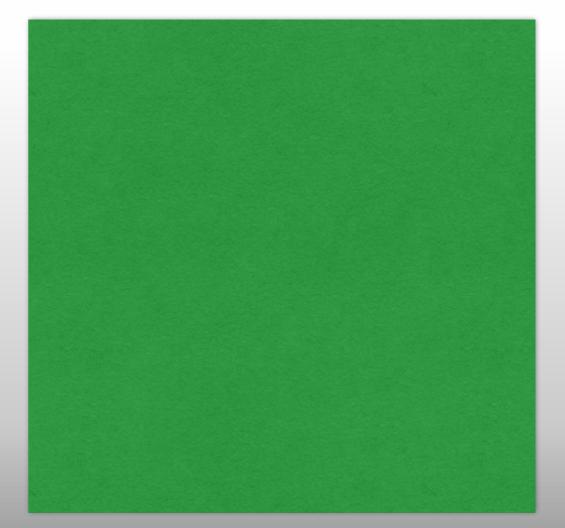


Firearms and tool marks experts & scientists

Surface metrology experts

Thousands of comparisons of 3D measurements of land surfaces Reliability

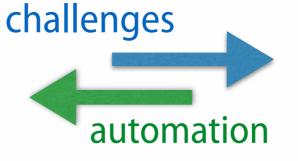


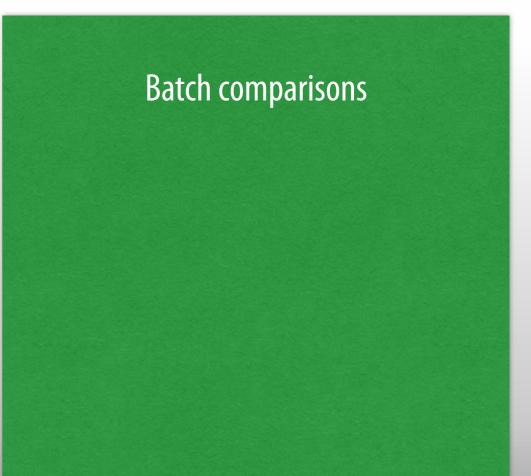


Firearms and tool marks experts & scientists

Surface metrology experts

Thousands of comparisons of 3D measurements of land surfaces Reliability Traceability

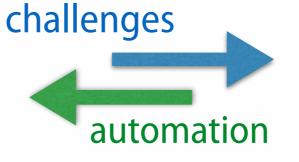




Firearms and tool marks experts & scientists

Surface metrology experts

Thousands of comparisons of 3D measurements of land surfaces Reliability Traceability



Firearms and tool marks experts & scientists

Surface metrology experts

Thousands of comparisons of 3D measurements of land surfaces Reliability Traceability

Batch comparisons Non-proprietary parameters & algorithms

Firearms and tool marks experts & scientists

Surface metrology experts

Thousands of comparisons of 3D measurements of land surfaces Reliability Traceability

SENSOFAR

Batch comparisons Non-proprietary parameters & algorithms Reports with author, date & bullets identification

Firearms and tool marks experts & scientists

Surface metrology experts

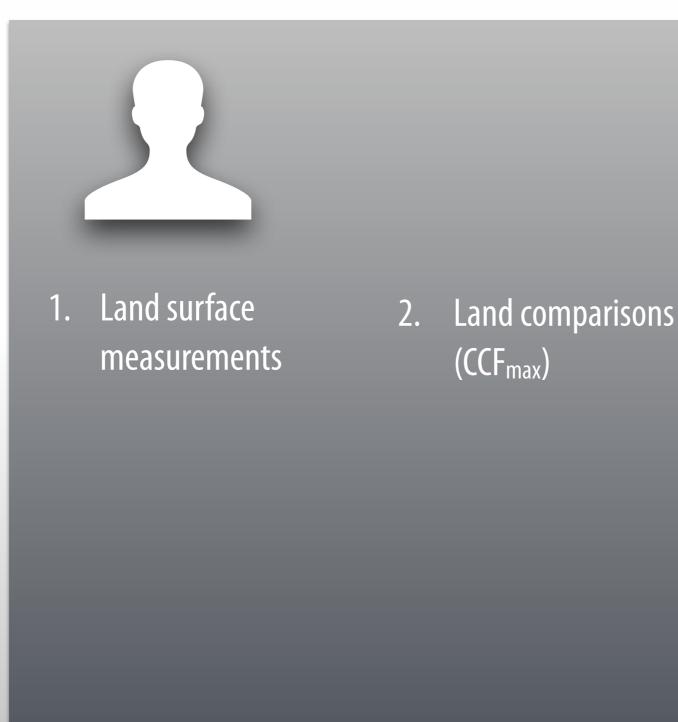
Thousands of comparisons of 3D measurements of land surfaces Reliability Traceability

Batch comparisons Non-proprietary parameters & algorithms Reports with author, date & bullets identification high speed

SUMMARY

Overview

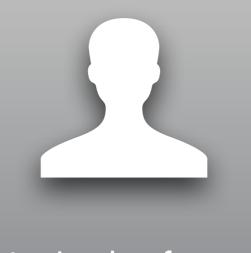
- Methodology
- Results
- Future
- Conclusions



1. Land surface measurements

[5] D.S McClarin. Adding an Objective Component to Routine Casework: Use of Confocal Microscopy for the Analysis of 9 mm Caliber Bullets. AFTE Journal - Volume 47 Number 3 - Summer 2015

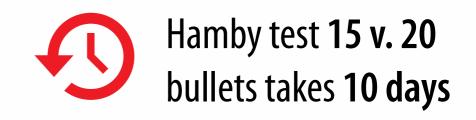
SENSOFAR


[5] D.S McClarin. Adding an Objective Component to Routine Casework: Use of Confocal Microscopy for the Analysis of 9 mm Caliber Bullets. AFTE Journal - Volume 47 Number 3 - Summer 2015

- 2. Land comparisons (CCF_{max})
- 3. Bullet comparisons: CFF_{max} matrix

[5] D.S McClarin. Adding an Objective Component to Routine Casework: Use of Confocal Microscopy for the Analysis of 9 mm Caliber Bullets. AFTE Journal - Volume 47 Number 3 - Summer 2015

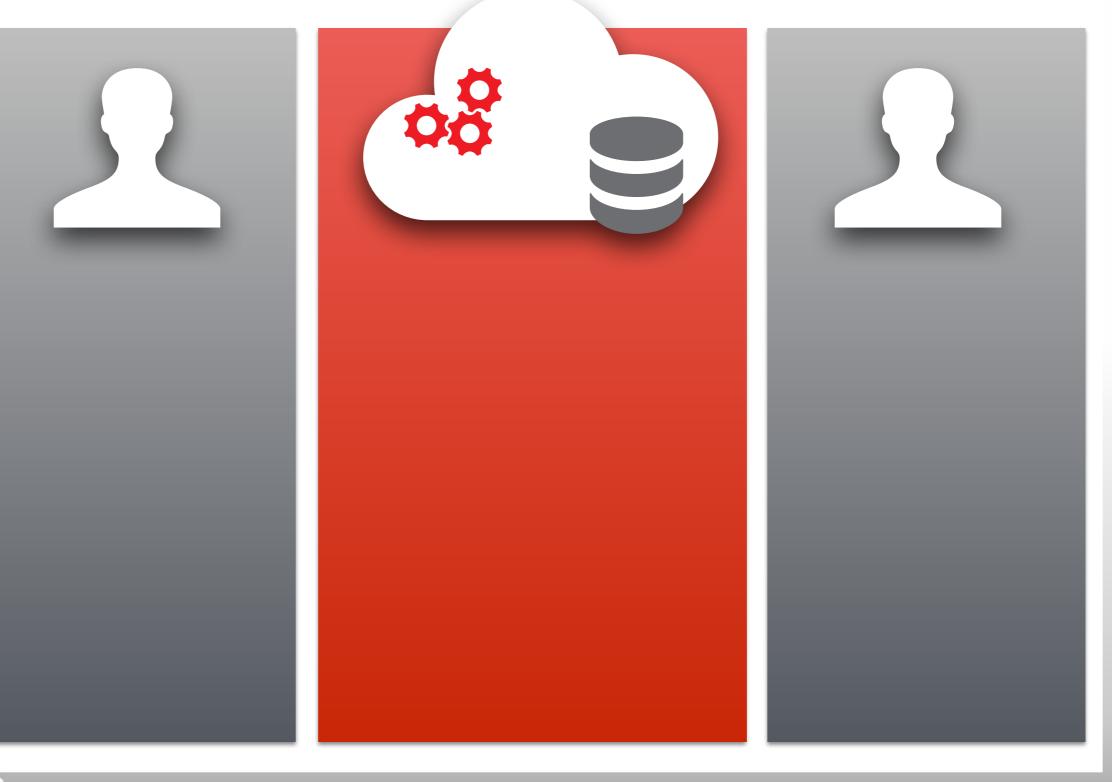
1. Land surface measurements


2. Land comparisons (CCF_{max})

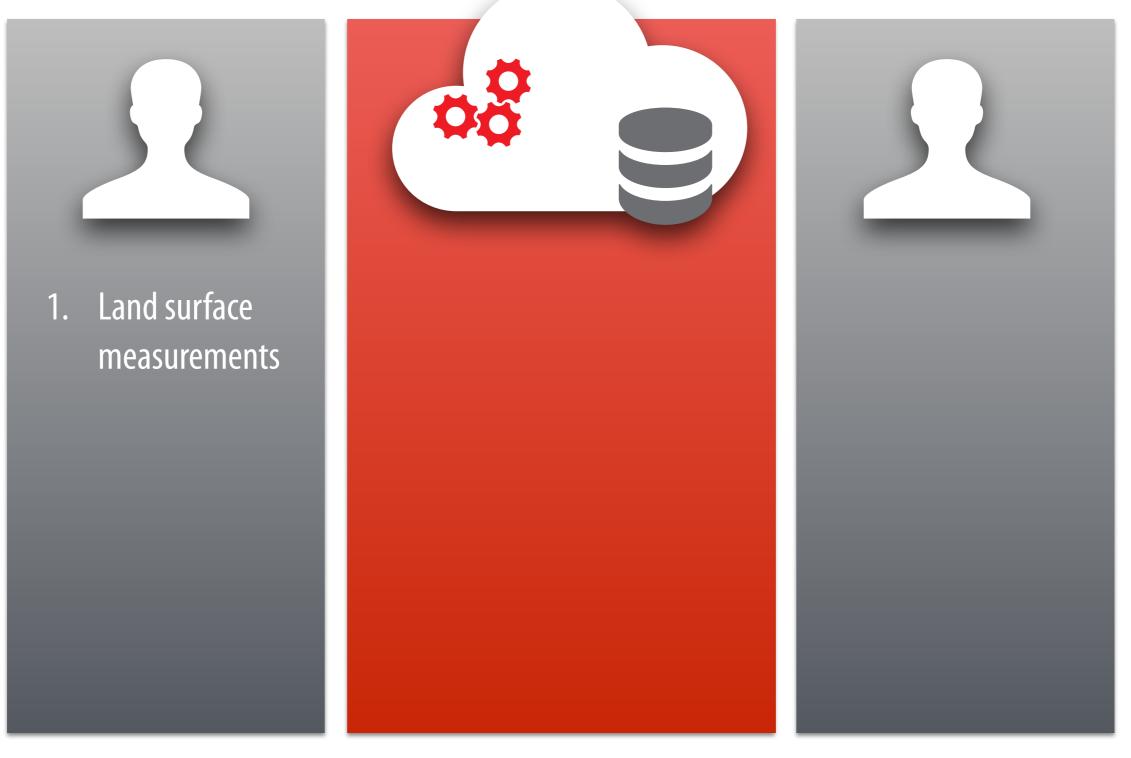
4. Top N list analysis

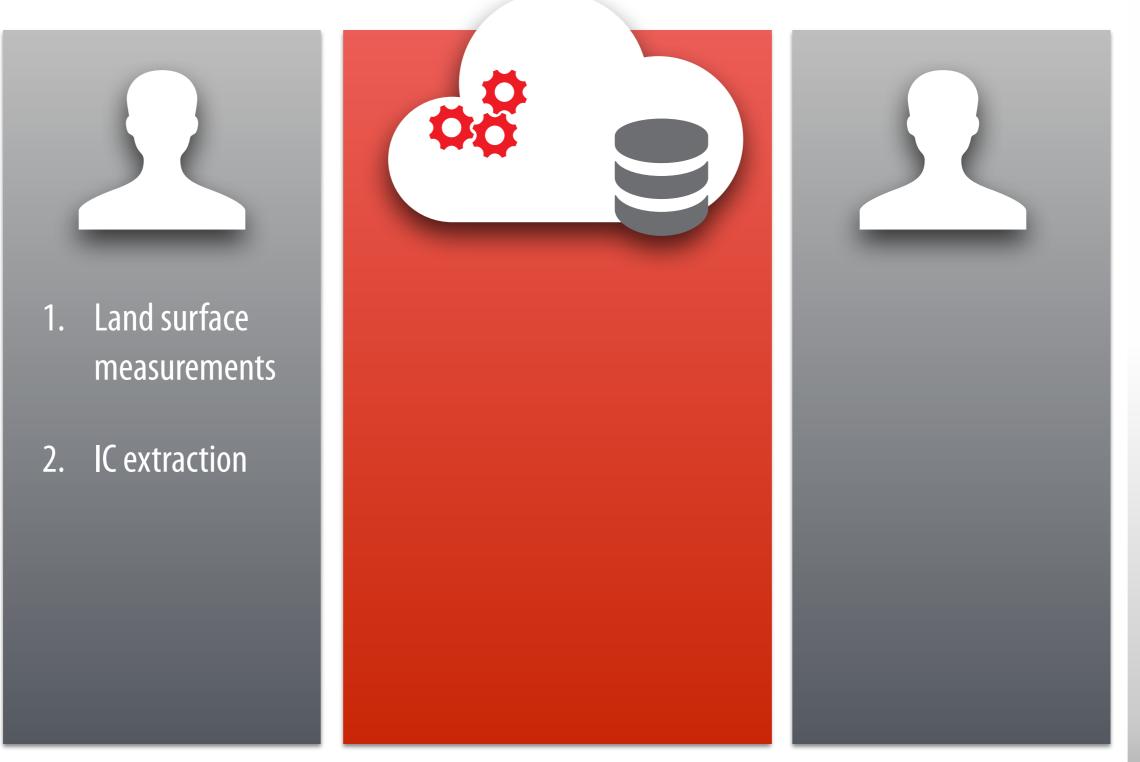
3. Bullet comparisons: CFF_{max} matrix

[5] D.S McClarin. Adding an Objective Component to Routine Casework: Use of Confocal Microscopy for the Analysis of 9 mm Caliber Bullets. AFTE Journal - Volume 47 Number 3 - Summer 2015



. Land comparisons (CCF_{max}) 4. Top N list analysis


3. Bullet comparisons: CFF_{max} matrix


[5] D.S McClarin. Adding an Objective Component to Routine Casework: Use of Confocal Microscopy for the Analysis of 9 mm Caliber Bullets. AFTE Journal - Volume 47 Number 3 - Summer 2015

- measurements
- 2. IC extraction

3. IC comparison (CCF_{max})

- 1. Land surface measurements
- 2. IC extraction

3. IC comparison (CCF_{max})

4. Bullet comparisons:
new automated
comparison score:
Sequence Average
Maximum (SAM)

- 1. Land surface measurements
- 2. IC extraction

- 3. IC comparison (CCF_{max})
- 4. Bullet comparisons: new automated
 comparison score:
 Sequence Average
 Maximum (SAM)

5. Top N list analysis

Hamby test **15 v. 20** bullets takes < **2 days**

- 1. Land surface measurements
- 2. IC extraction

SENSOFAR


3. IC comparison (CCF_{max})

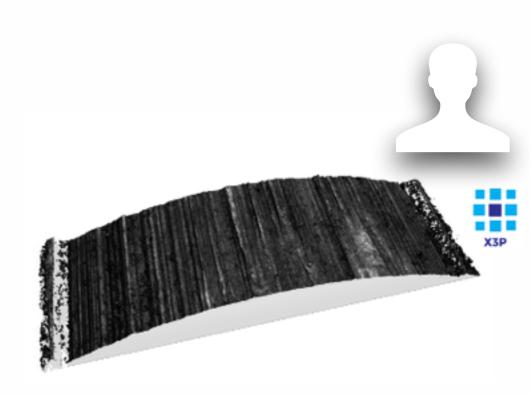
1

4 sec.

4. Bullet comparisons: new automated
comparison score:
Sequence Average
Maximum (SAM) 5. Top N list analysis

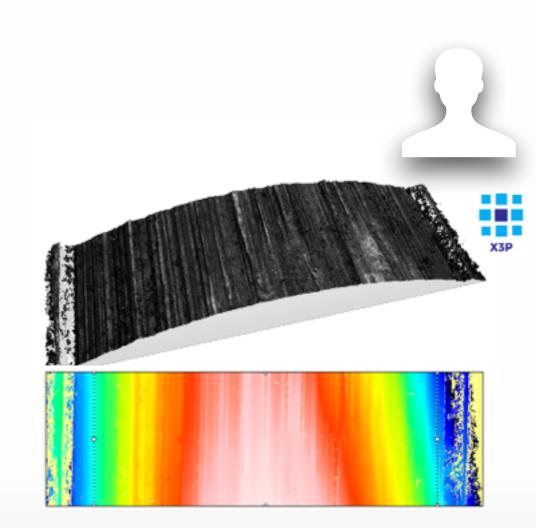
METHODOLOGY 1. Land surface measurements

SENSOFAR


METHODOLOGY 1. Land surface measurements

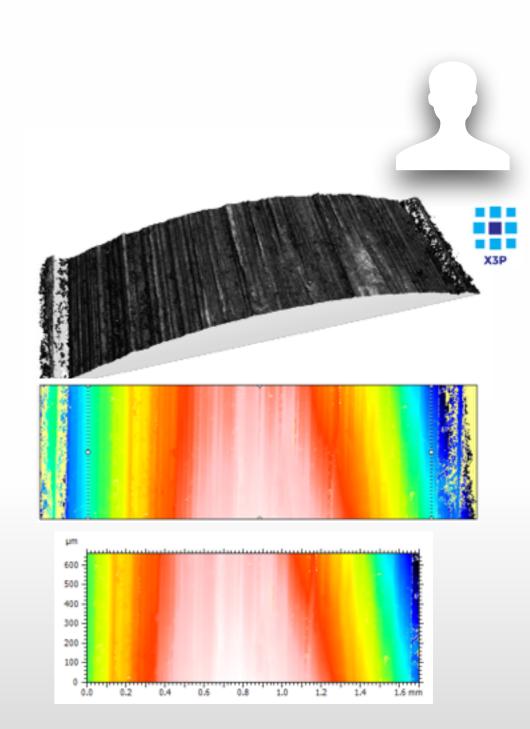
Example: Beretta bullet ADFS - Confocal measurement using S neox

1. Full surface (2.3 mm x 0.66 mm)

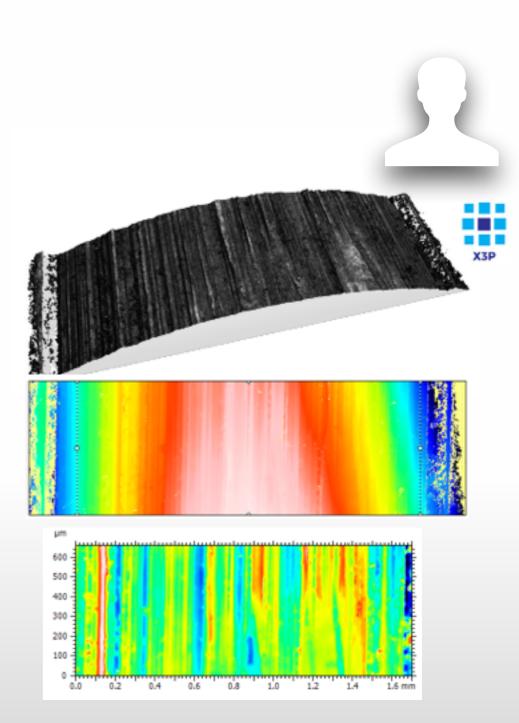


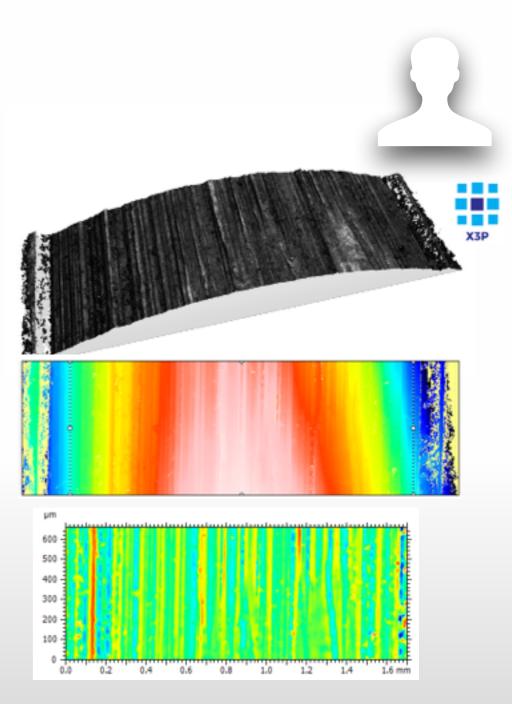
Example: Beretta bullet ADFS - Confocal measurement using S neox

1. Full surface (2.3 mm x 0.66 mm)

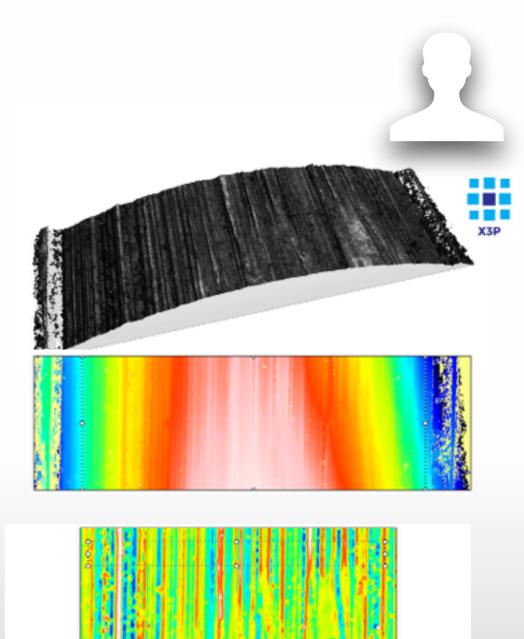

2. Crop1 - eliminate land shoulders (1.7 mm x 0.66 mm)

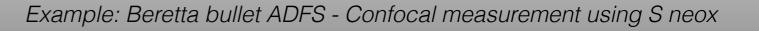
Example: Beretta bullet ADFS - Confocal measurement using S neox


- 1. Full surface (2.3 mm x 0.66 mm)
- 2. Crop1 eliminate land shoulders (1.7 mm x 0.66 mm)
- 3. Waviness (filter Gaussian, 0.025 mm) remove surface roughness

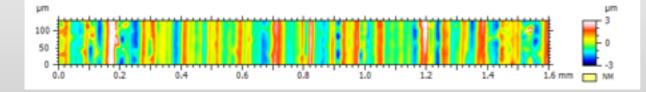

1. Full surface (2.3 mm x 0.66 mm)

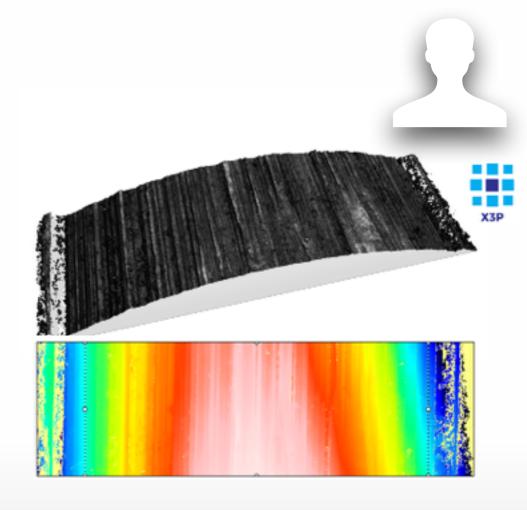
- 2. Crop1 eliminate land shoulders (1.7 mm x 0.66 mm)
- 3. Waviness (filter Gaussian, 0.025 mm) remove surface roughness
- 4. Form removal (polynomial degree 2) remove cylinder

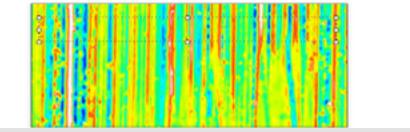



1. Full surface (2.3 mm x 0.66 mm)

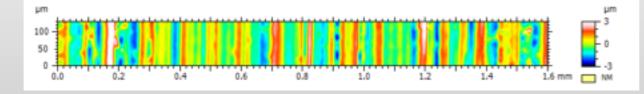
- 2. Crop1 eliminate land shoulders (1.7 mm x 0.66 mm)
- 3. Waviness (filter Gaussian, 0.025 mm) remove surface roughness
- 4. Form removal (polynomial degree 2) remove cylinder
- 5. Roughness (filter Gaussian, 0.127 mm) remove deformations

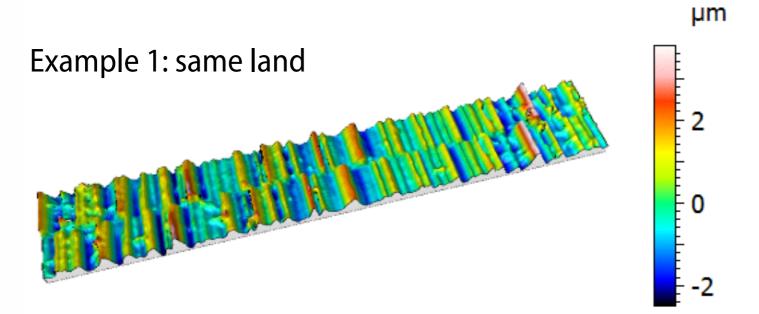


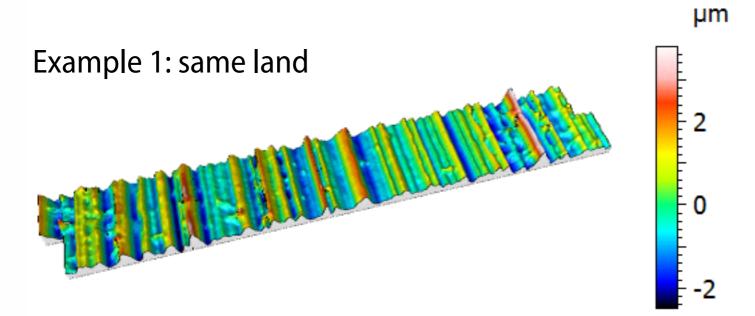

- 1. Full surface (2.3 mm x 0.66 mm)
- 2. Crop1 eliminate land shoulders (1.7 mm x 0.66 mm)
- 3. Waviness (filter Gaussian, 0.025 mm) remove surface roughness
- 4. Form removal (polynomial degree 2) remove cylinder
- 5. Roughness (filter Gaussian, 0.127 mm) remove deformations
- 6. Crop 2 select best area (eliminate defects)

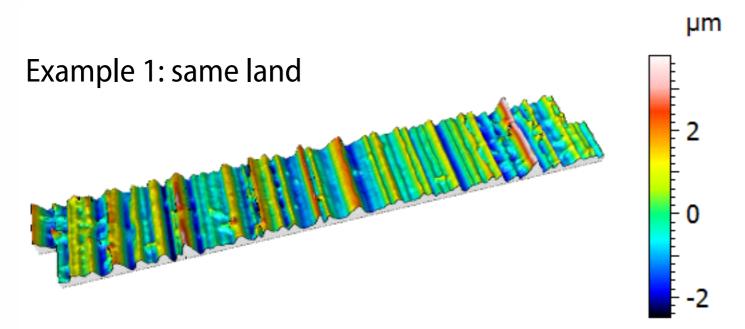


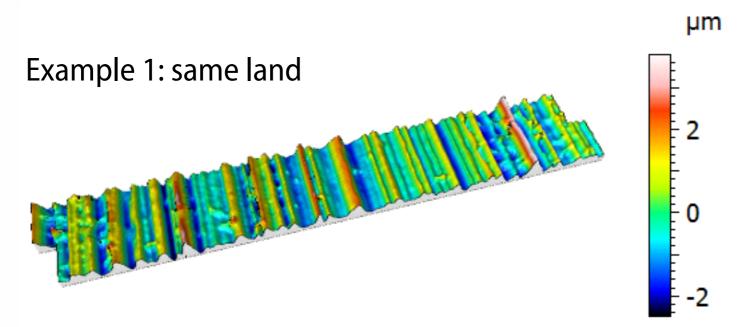
- 1. Full surface (2.3 mm x 0.66 mm)
- 2. Crop1 eliminate land shoulders (1.7 mm x 0.66 mm)
- 3. Waviness (filter Gaussian, 0.025 mm) remove surface roughness
- 4. Form removal (polynomial degree 2) remove cylinder
- 5. Roughness (filter Gaussian, 0.127 mm) remove deformations
- 6. Crop 2 select best area (eliminate defects)
- 7. Save IC surface (3D) 1.7 mm x 0.13 mm




- 1. Full surface (2.3 mm x 0.66 mm)
- 2. Crop1 eliminate land shoulders (1.7 mm x 0.66 mm)
- 3. Waviness (filter Gaussian, 0.025 mm) remove surface roughness
- 4. Form removal (polynomial degree 2) remove cylinder
- 5. Roughness (filter Gaussian, 0.127 mm) remove deformations
- 6. Crop 2 select best area (eliminate defects)
- 7. Save IC surface (3D) 1.7 mm x 0.13 mm



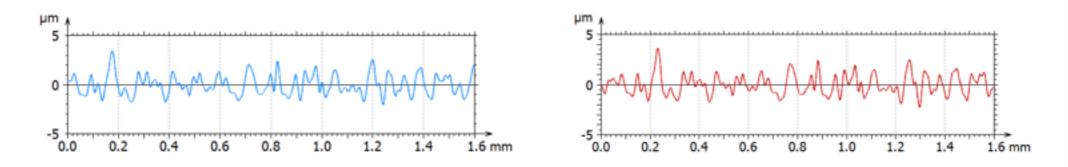



Cross-correlation of mean profiles

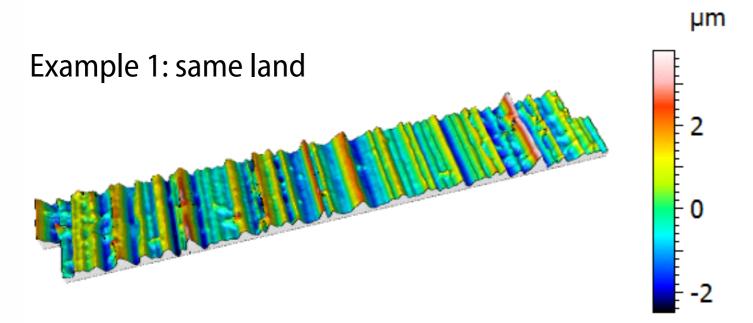
For discrete profiles the normalized cross-correlation for profiles **f** and **g** of **N** points can be defined as:

$$(f * g)[i] \equiv \frac{1}{N-1} \sum_{l=0}^{N-1} \frac{\left(f[l] - \bar{f}\right) \cdot \left(g[l+i] - \bar{g}\right)}{\sigma_f \cdot \sigma_g}$$

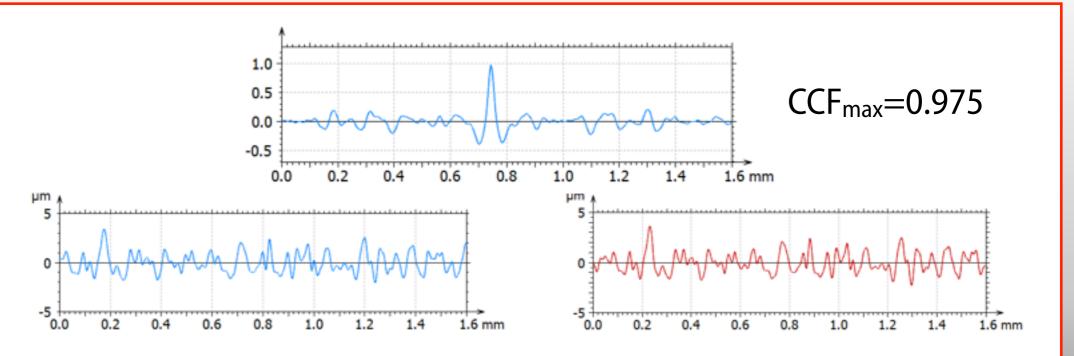
Where *i* is the lag, \overline{f} is the average of profile *f*, and σ_f is the standard deviation of profile *f*.

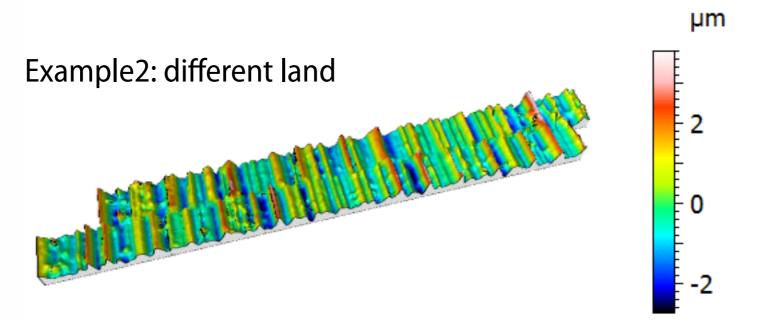


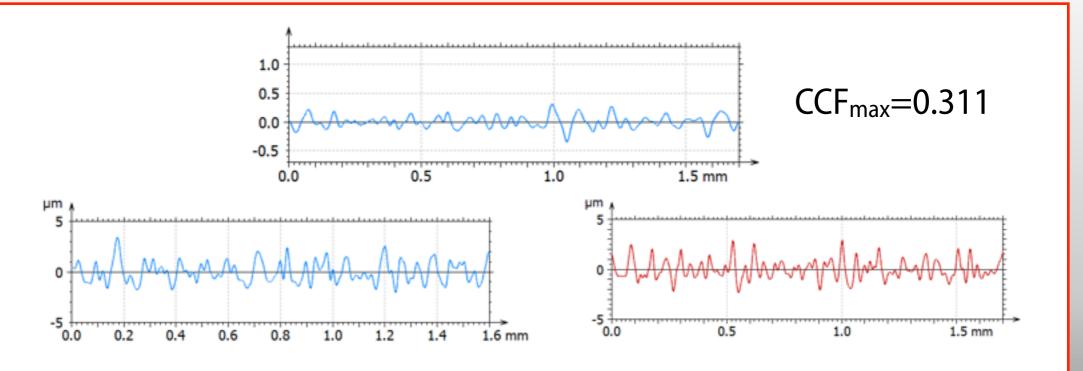
Cross-correlation of mean profiles

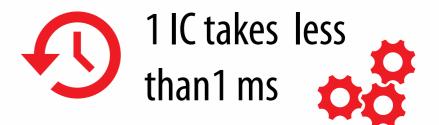

For discrete profiles the normalized cross-correlation for profiles **f** and **g** of **N** points can be defined as:

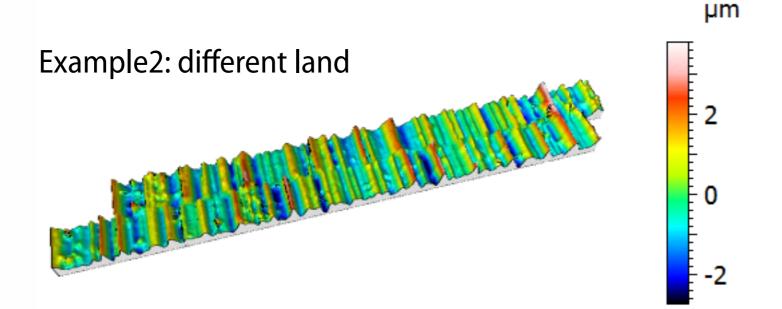
$$(f * g)[i] \equiv \frac{1}{N-1} \sum_{l=0}^{N-1} \frac{\left(f[l] - \bar{f}\right) \cdot \left(g[l+i] - \bar{g}\right)}{\sigma_f \cdot \sigma_g}$$


Where *i* is the lag, \overline{f} is the average of profile *f*, and σ_f is the standard deviation of profile *f*.

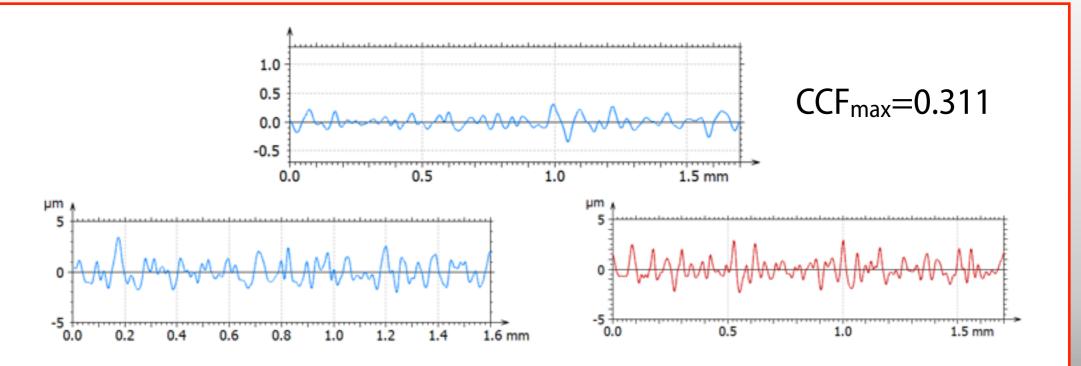



Cross-correlation of mean profiles

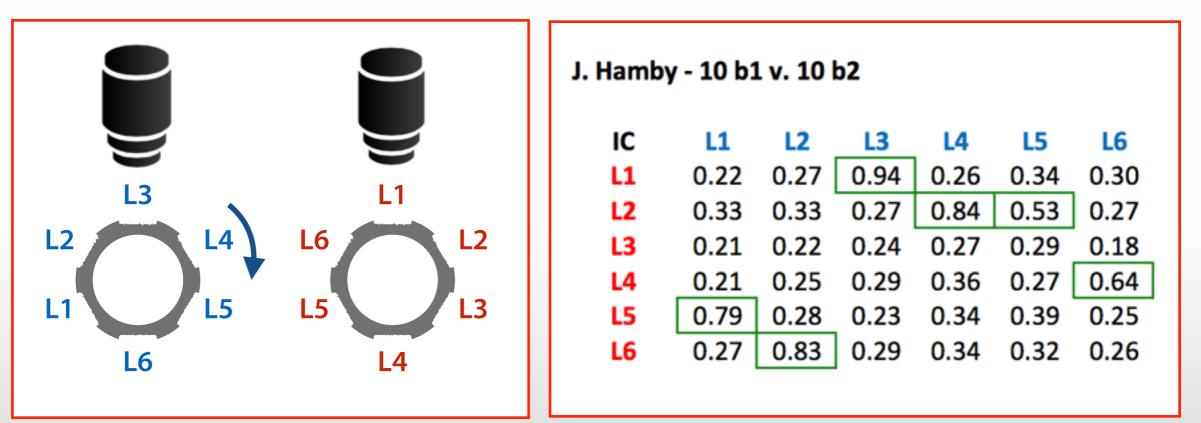




Cross-correlation of mean profiles

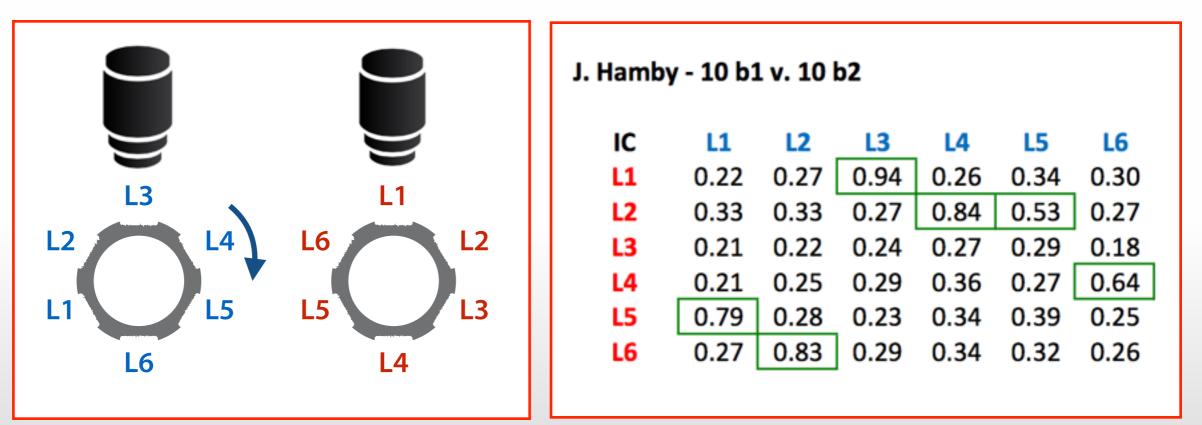


Cross-correlation of mean profiles


Example 1: same barrel (Br10)

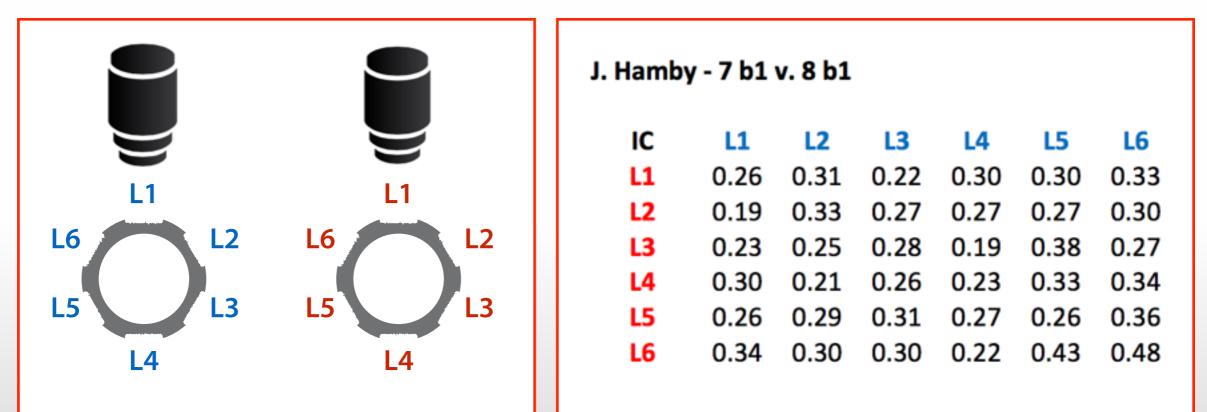
		J. Hamby - 10 b1 v. 10 b2							
		IC	L1	L2	L3	L4	L5	L6	
		L1	0.22	0.27	0.94	0.26	0.34	0.30	
L1		L2	0.33	0.33	0.27	0.84	0.53	0.27	
L6 L2	L6 L2	L3	0.21	0.22	0.24	0.27	0.29	0.18	
		L4	0.21	0.25	0.29	0.36	0.27	0.64	
L5 L3	L5 L3	L5	0.79	0.28	0.23	0.34	0.39	0.25	
L4	L4	L6	0.27	0.83	0.29	0.34	0.32	0.26	

Example 1: same barrel (J. Hamby Br10)



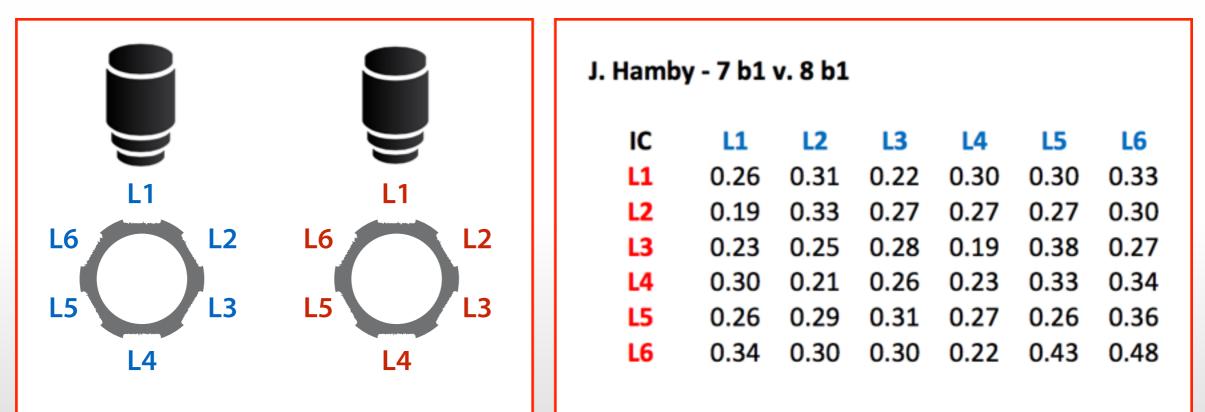
highlighted in green cells where $CCF_{max} > 0.5$: 6 cells

Example 1: same barrel (J. Hamby Br10)



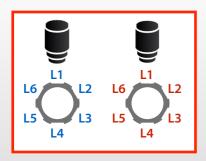
highlighted in green cells where $CCF_{max} > 0.5$: 6 cells

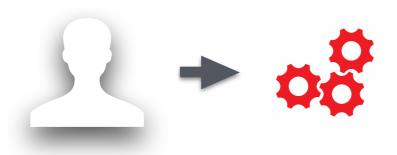
Example 2: different barrel (J. Hamby Br7 & Br8)



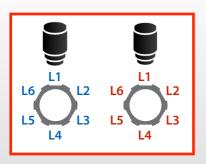
highlighted in green cells where $CCF_{max} > 0.5$: 0 cells

Example 2: different barrel (J. Hamby Br7 & Br8)


highlighted in green cells where $CCF_{max} > 0.5$: 0 cells

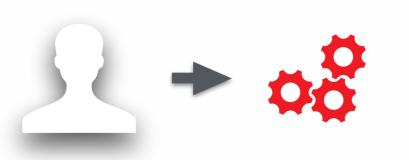


Example 1: same barrel (J. Hamby Br10)



Single: Matrix maximum (Max)

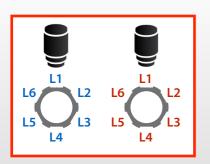
Example 1: same barrel (J. Hamby Br10)



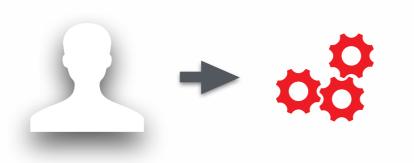
J. Hamby - 10 b1 v. 10 b2

IC	L1					
	0.22					
L2	0.33	0.33	0.27	0.84	0.53	0.27
	0.21					
L4	0.21	0.25	0.29	0.36	0.27	0.64
	0.79					
L6	0.27	0.83	0.29	0.34	0.32	0.26

Max 0.94

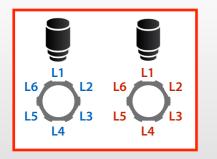


Single: Matrix maximum (**Max**)


Composite

Column Maximum Average (CMA)

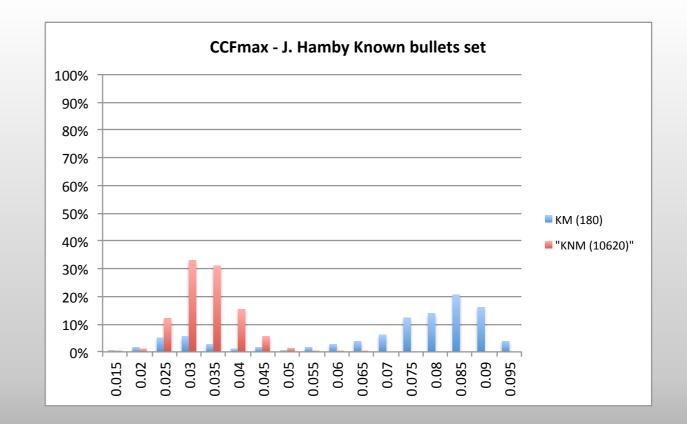
Example 1: same barrel (J. Hamby Br10)



J. Hamby	J. Hamby - 10 b1 v. 10 b2									
IC	L1	L2	L3	L4	L5	L6				
L1	0.22	0.27	0.94	0.26	0.34	0.30				
L2	0.33	0.33	0.27	0.84	0.53	0.27				
L3	0.21	0.22	0.24	0.27	0.29	0.18				
L4	0.21	0.25	0.29	0.36	0.27	0.64				
L5	0.79	0.28	0.23	0.34	0.39	0.25				
L6	0.27	0.83	0.29	0.34	0.32	0.26				
CMA										
Col. Max.	0.79	0.83	0.94	0.84	0.53	0.64	0.76			

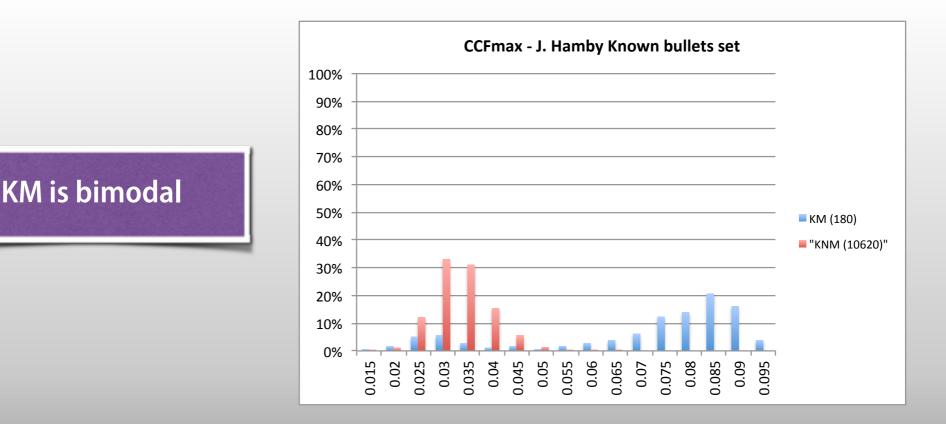
- Single: Matrix maximum (**Max**)
- Composite
 - Column Maximum Average (CMA)
 - Sequence Average Maximum (SAM)

Example 1: same barrel (J. Hamby Br10)


J.	Ham	by -	10	b1	v.	10	b2
•••		~,			•••	_	

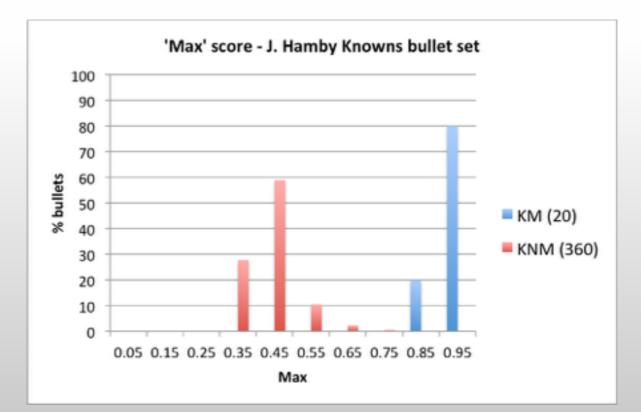
IC	L1	L2	L3	L4	L5	L6	Seq. Av	
L1	0.22	0.27	0.94	0.26	0.34	0.30	0.30	
L2	0.33	0.33	0.27	0.84	0.53	0.27	0.27	
L3	0.21	0.22	0.24	0.27	0.29	0.18	0.72	SAM
L4	0.21	0.25	0.29	0.36	0.27	0.64	0.29	
L5	0.79	0.28	0.23	0.34	0.39	0.25	0.27	
L6	0.27	0.83	0.29	0.34	0.32	0.26	0.30	

- Statistical study of CCF_{max}: J. Hamby Known bullets set is compared to itself.; for every matching bullet 6 lands are Known Matches (KM) and 30 are Known Non Matches (30). For the full set we get:
 - Known Matches (180)
 - Known Non Matches (10620)

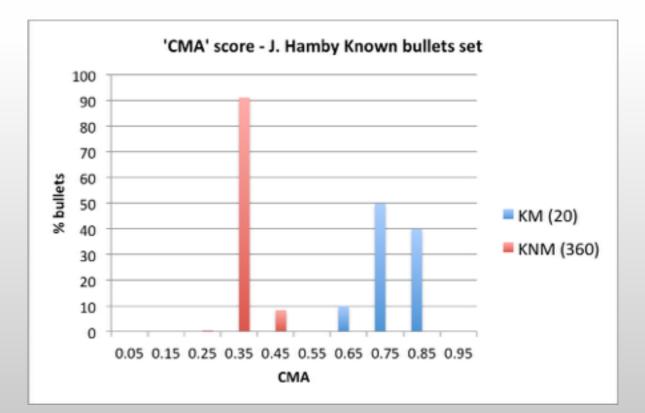


- Statistical study of CCF_{max}: J. Hamby Known bullets set is compared to itself.; for every matching bullet 6 lands are Known Matches (KM) and 30 are Known Non Matches (30). For the full set we get:
 - Known Matches (180)
 - Known Non Matches (10620)

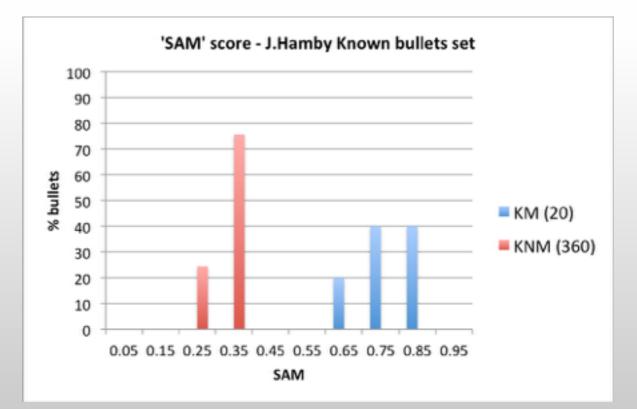
- Statistical study of CCF_{max}: J. Hamby Known bullets set is compared to itself.; for every matching bullet 6 lands are Known Matches (KM) and 30 are Known Non Matches (30). For the full set we get:
 - Known Matches (180)
 - Known Non Matches (10620)


- Statistical study bullet score: J. Hamby Known bullets set is compared to itself.; for every bullet we get 1 KM &18 KNM
 - Known Matches (20)
 - Known Non Matches (320)

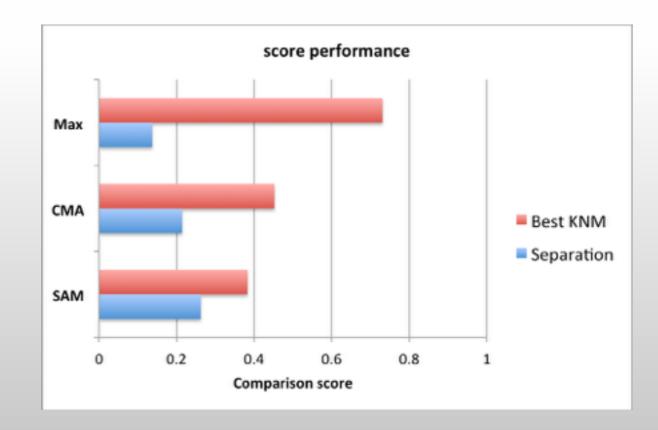
- Statistical study bullet score: J. Hamby Known bullets set is compared to itself.; for every bullet we get 1 KM &18 KNM
 - Known Matches (20)
 - Known Non Matches (320)
- Histogram analysis
 - best KNM
 - separation KM vs KNM



- Statistical study bullet score: J. Hamby Known bullets set is compared to itself.; for every bullet we get 1 KM &18 KNM
 - Known Matches (20)
 - Known Non Matches (320)
- Histogram analysis
 - best KNM
 - separation KM vs KNM



- Statistical study bullet score: J. Hamby Known bullets set is compared to itself.; for every bullet we get 1 KM &18 KNM
 - Known Matches (20)
 - Known Non Matches (320)
- Histogram analysis
 - best KNM
 - separation KM vs KNM



- Statistical study bullet score: J. Hamby Known bullets set is compared to itself.; for every bullet we get 1 KM &18 KNM
 - Known Matches (20)
 - Known Non Matches (320)
- Histogram analysis
 - best KNM
 - separation KM vs KNM

- Statistical study bullet score: J. Hamby Known bullets set is compared to itself.; for every bullet we get 1 KM &18 KNM
 - Known Matches (20)
 - Known Non Matches (320)
- Histogram analysis
 - best KNM
 - separation KM vs KNM

- Statistical study bullet score: J. Hamby Known bullets set is compared to itself.; for every bullet we get 1 KM &18 KNM
 - Known Matches (20)

SENSOFAR

Known Non Matches (320)

METHODOLOGY 4. Bullets comparison

- Statistical study bullet score: J. Hamby Known bullets set is compared to itself.; for every bullet we get 1 KM &18 KNM
 - Known Matches (20)
 - Known Non Matches (320)

0.5

SENSOFAR

SUMMARY

- Overview
- Methodology
- Results
- Future
- Conclusions

RESULTS SensoMATCH[®] bullet comparison engine

- Streamlines bullet comparison tasks
- Published algorithms and subject to open tests
- Result files

SENSOFAR

- Top N list
- SAM & match matrix
- IC comparison matrix

- Training mode
- Missing lands management
- Customized templates
- Non-proprietary 3D inputs

RESULTS SensoMATCH[®] bullet comparison engine

- Streamlines bullet comparison tasks
- Published algorithms and subject to open tests
- Result files

SENSOFAR

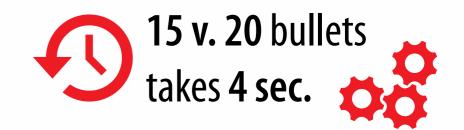
- Top N list
- SAM & match matrix
- IC comparison matrix

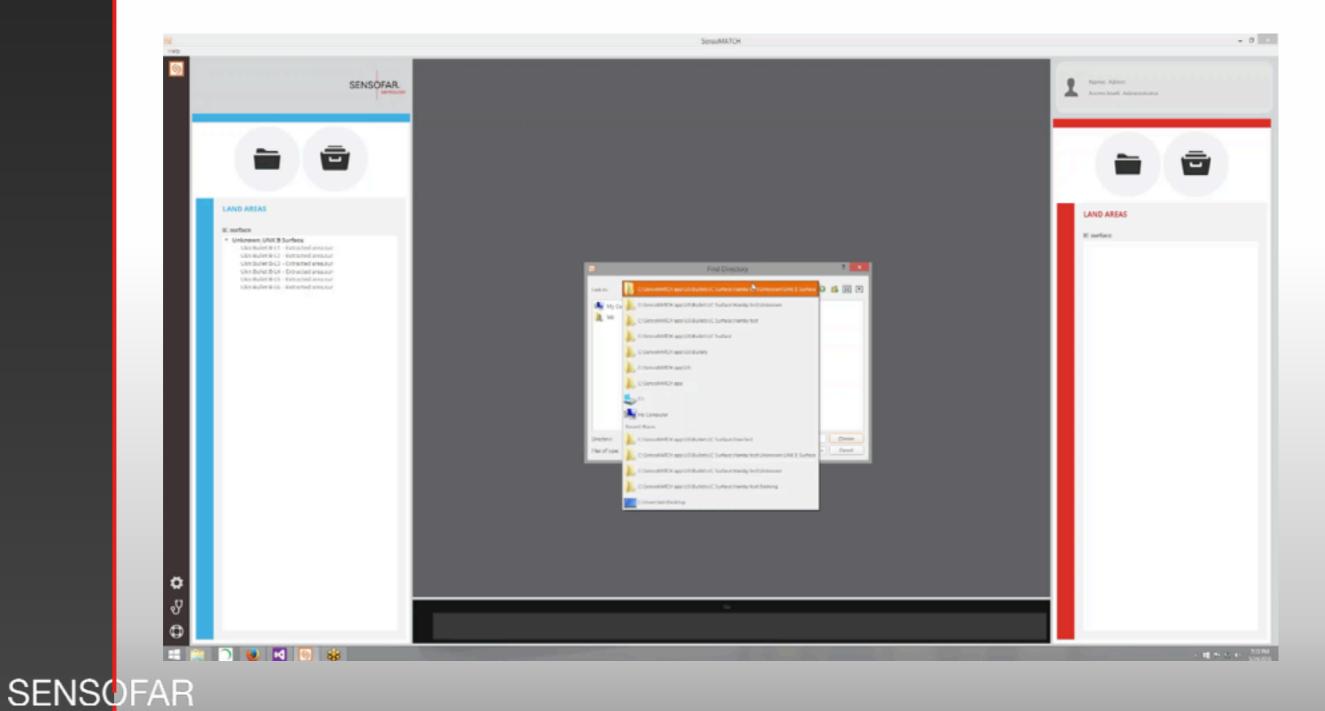
- Training mode
- Missing lands management

FBI labs

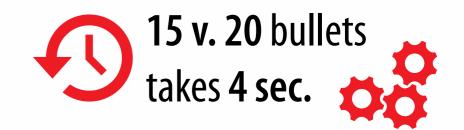
- Customized templates
- Non-proprietary 3D inputs

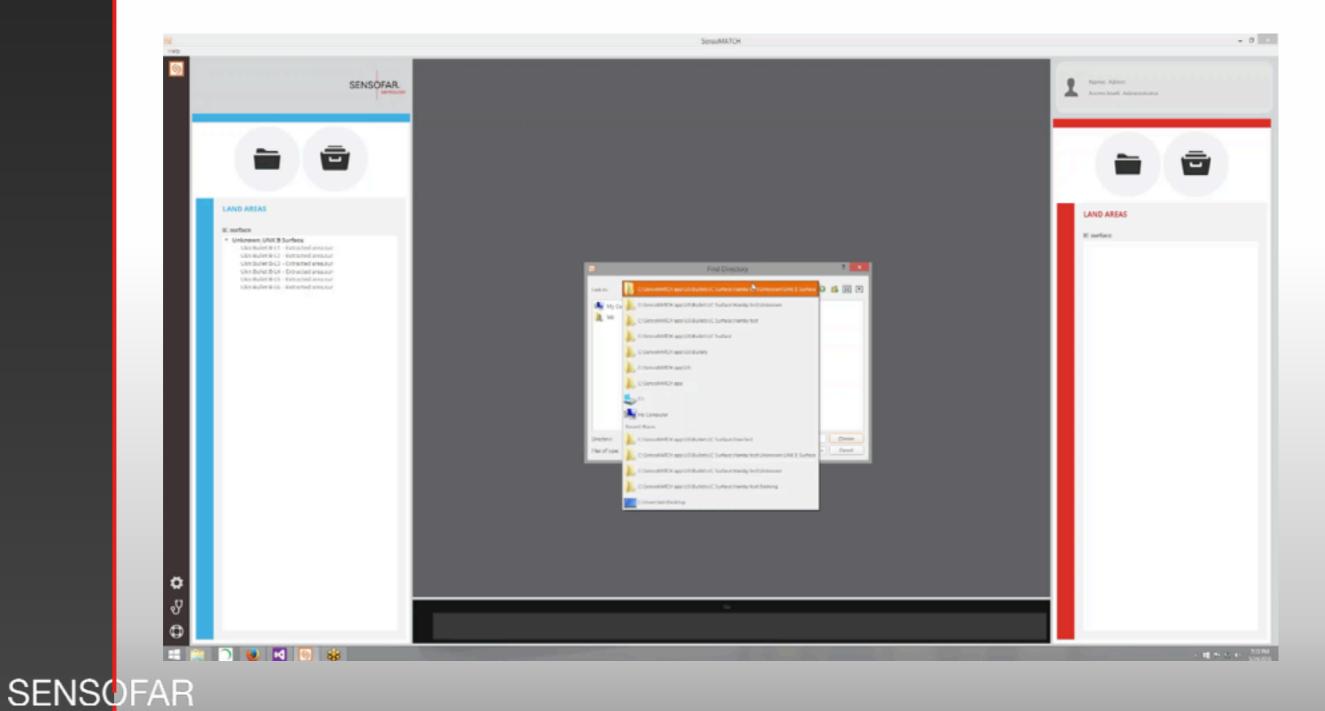
RESULTS SensoMATCH[®] bullet comparison engine

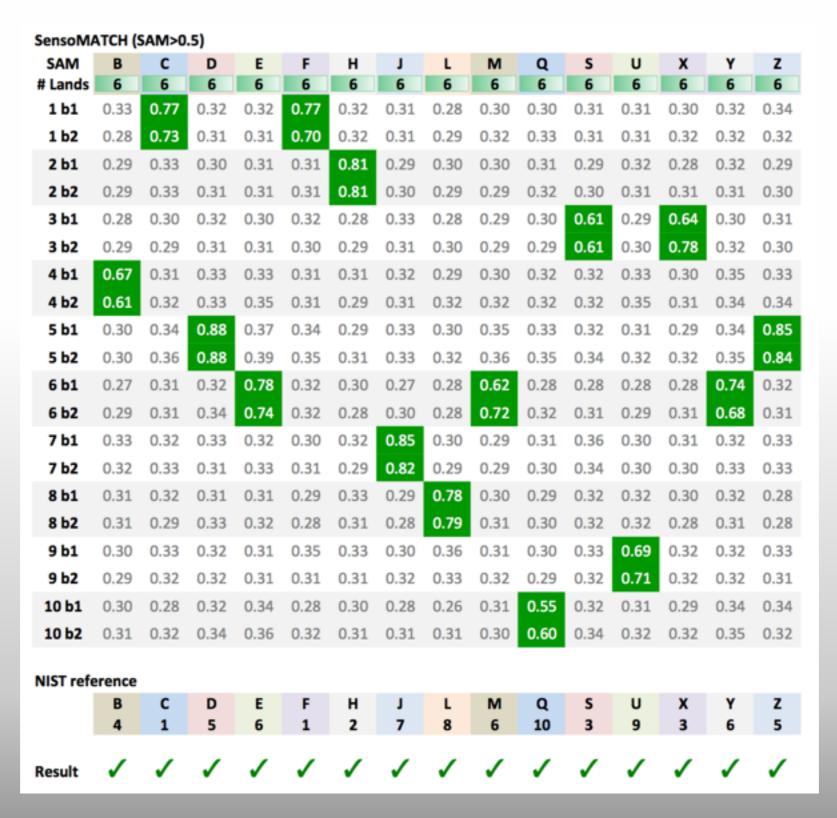

- Streamlines bullet comparison tasks
- Published algorithms and subject to open tests
- Result files


SENSOFAR

- Top N list
- SAM & match matrix
- IC comparison matrix

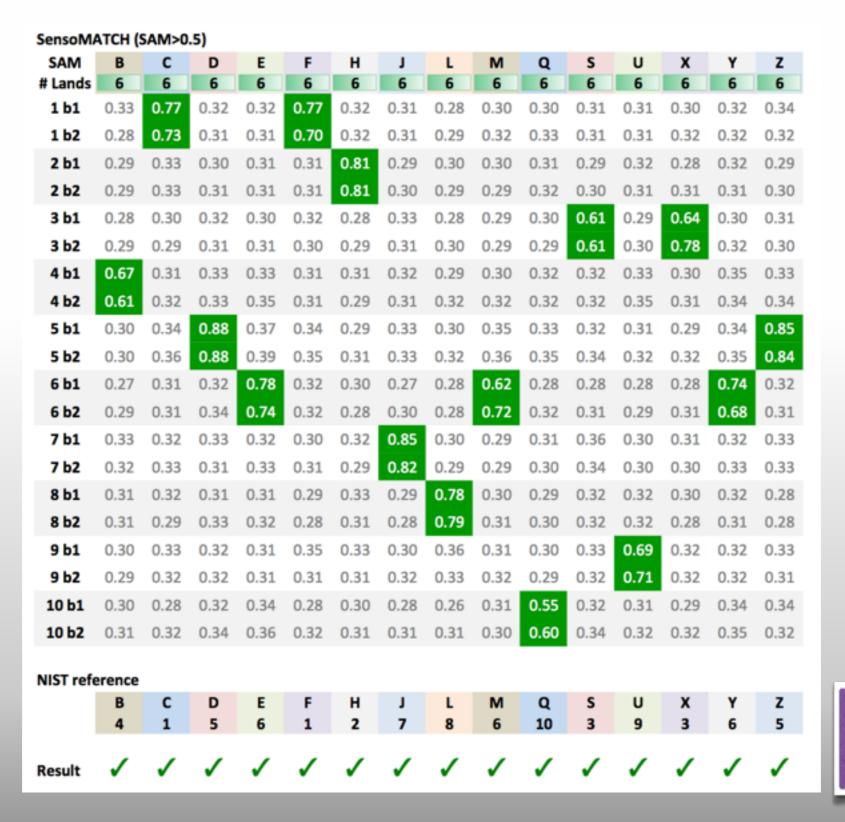

- Training mode
- Missing lands management
- Customized templates
- Non-proprietary 3D inputs


Pristine bullets J. Hamby test: 15x20x6x6 (10800 IC)

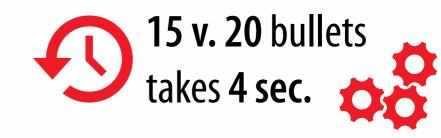


Pristine bullets J. Hamby test: 15x20x6x6 (10800 IC)

Pristine bullets J. Hamby test: 15x20x6x6 (10800 IC)


15 v. 20 bullets

takes **4 sec**.


SENSOFAR

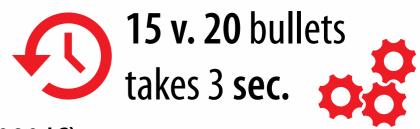
SENSOFAR

Pristine bullets J. Hamby test: 15x20x6x6 (10800 IC)

Identification 15/15

SENSOFAR

15 v. 20 bullets takes 3 sec.


Damaged or fragmented bullets

J. Hamby test - random lands elimination: 15x20x6xN (4080 IC)

SensoMATCH (SAM>0.5)															
SAM	В	С	D	E	F	н	1	L	м	Q	S	U	X	Y	Z
# Lands	6	2	3	2	3	2	3	2	2	3	3	2	1	1	1
1 b1	0.37	0.88	0.31	0.30	0.63	0.36	0.33	0.30	0.33	0.30	0.31	0.36	0.32	0.39	0.30
1 b2	0.29	0.90	0.33	0.32	0.51	0.34	0.35	0.31	0.32	0.31	0.32	0.38	0.30	0.42	0.30
2 b1	0.29	0.40	0.32	0.34	0.34	0.80	0.32	0.28	0.31	0.33	0.30	0.33	0.31	0.34	0.31
2 b2	0.29	0.38	0.30	0.33	0.32	0.75	0.35	0.29	0.31	0.34	0.30	0.35	0.31	0.44	0.34
3 61	0.30	0.34	0.31	0.31	0.30	0.33	0.31	0.31	0.30	0.30	0.63	0.32	0.81	0.37	0.36
3 b2	0.32	0.35	0.33	0.33	0.33	0.27	0.34	0.32	0.31	0.32		0.33	0.71	0.35	0.34
4 b1	0.59	0.39	0.34	0.36	0.32	0.38	0.36	0.33	0.32	0.33	0.32	0.37	0.34	0.45	0.39
4 b2	0.52	0.42	0.33	0.40	0.31	0.40	0.34	0.39	0.36	0.33	0.35	0.38	0.34	0.42	0.33
5 b1	0.32	0.44	0.91	0.36	0.33	0.34	0.38	0.32	0.42	0.34	0.33	0.34	0.33	0.37	0.88
5 b2	0.31	0.44	0.91	0.38	0.32	0.35	0.40	0.31	0.44	0.35	0.36	0.36	0.32	0.38	0.91
6 b1	0.26	0.34	0.32	0.63	0.33	0.32	0.30	0.28	0.63	0.28	0.28	0.31	0.30	0.36	0.34
6 b2	0.30	0.34	0.34	0.84	0.31	0.33	0.34	0.33	0.90	0.31	0.33	0.34	0.39	0.47	0.35
7 b1	0.34	0.35	0.39	0.33	0.32	0.31	0.89	0.31	0.33	0.33	0.38	0.37	0.38	0.37	0.41
7 b2	0.32	0.34	0.34	0.31	0.32	0.31	0.82	0.32	0.31	0.32	0.34	0.33	0.39	0.38	0.33
8 b1	0.31	0.33	0.34	0.34	0.32	0.32	0.29	0.67	0.35	0.32	0.29	0.36	0.34	0.43	0.33
8 b2	0.31	0.32	0.37	0.32	0.30	0.33	0.30	0.66	0.36	0.31	0.31	0.37	0.32	0.39	0.32
9 b1	0.29	0.38	0.33	0.32	0.37	0.35	0.35	0.39	0.34	0.32	0.33	0.61	0.34	0.36	0.34
9 b2	0.30	0.36	0.32	0.33	0.34	0.35	0.36	0.36	0.34	0.33	0.36	0.66	0.42	0.36	0.30
10 b1	0.32	0.31	0.31	0.33	0.32	0.30	0.30	0.28	0.30	0.65	0.30	0.39	0.32	0.39	0.30
10 b2	0.34	0.36	0.34	0.36	0.30	0.32	0.33	0.38	0.33	0.70	0.36	0.43	0.36	0.42	0.32
NIST refe		6	D	F	F	н				0	6		Y	v	7
	В 4	C 1	D 5	6	F 1	н 2	7	8	M 6	Q 10	5 3	U 9	3	6	5
Result	1	1	1	1	1	1	1	1	1	1	1	1	1	×	1

SENSOFAR

Damaged or fragmented bullets

J. Hamby test - random lands elimination: 15x20x6xN (4080 IC)

SensoMATCH (SAM>0.5)															
SAM	В	С	D	E	F	н	1	L	м	Q	S	U	X	Y	Z
# Lands	6	2	3	2	3	2	3	2	2	3	3	2	1	1	1
1 b1	0.37	0.88	0.31	0.30	0.63	0.36	0.33	0.30	0.33	0.30	0.31	0.36	0.32	0.39	0.30
1 b2	0.29	0.90	0.33	0.32	0.51	0.34	0.35	0.31	0.32	0.31	0.32	0.38	0.30	0.42	0.30
2 b1	0.29	0.40	0.32	0.34	0.34	0.80	0.32	0.28	0.31	0.33	0.30	0.33	0.31	0.34	0.31
2 b2	0.29	0.38	0.30	0.33	0.32	0.75	0.35	0.29	0.31	0.34	0.30	0.35	0.31	0.44	0.34
3 b1	0.30	0.34	0.31	0.31	0.30	0.33	0.31	0.31	0.30	0.30	0.63	0.32	0.81	0.37	0.36
3 b2	0.32	0.35	0.33	0.33	0.33	0.27	0.34	0.32	0.31	0.32	0.63	0.33	0.71	0.35	0.34
4 b1	0.59	0.39	0.34	0.36	0.32	0.38	0.36	0.33	0.32	0.33	0.32	0.37	0.34	0.45	0.39
4 b2	0.52	0.42	0.33	0.40	0.31	0.40	0.34	0.39	0.36	0.33	0.35	0.38	0.34	0.42	0.33
5 b1	0.32	0.44	0.91	0.36	0.33	0.34	0.38	0.32	0.42	0.34	0.33	0.34	0.33	0.37	0.88
5 b2	0.31	0.44	0.91	0.38	0.32	0.35	0.40	0.31	0.44	0.35	0.36	0.36	0.32	0.38	0.91
6 b1	0.26	0.34	0.32	0.63	0.33	0.32	0.30	0.28	0.63	0.28	0.28	0.31	0.30	0.36	0.34
6 b2	0.30	0.34	0.34	0.84	0.31	0.33	0.34	0.33	0.90	0.31	0.33	0.34	0.39	0.47	0.35
7 b1	0.34	0.35	0.39	0.33	0.32	0.31	0.89	0.31	0.33	0.33	0.38	0.37	0.38	0.37	0.41
7 b2	0.32	0.34	0.34	0.31	0.32	0.31	0.82	0.32	0.31	0.32	0.34	0.33	0.39	0.38	0.33
8 b1	0.31	0.33	0.34	0.34	0.32	0.32	0.29	0.67	0.35	0.32	0.29	0.36	0.34	0.43	0.33
8 b2	0.31	0.32	0.37	0.32	0.30	0.33	0.30	0.66	0.36	0.31	0.31	0.37	0.32	0.39	0.32
9 b1	0.29	0.38	0.33	0.32	0.37	0.35	0.35	0.39	0.34	0.32	0.33	0.61	0.34	0.36	0.34
9 b2	0.30	0.36	0.32	0.33	0.34	0.35	0.36	0.36	0.34	0.33	0.36	0.66	0.42	0.36	0.30
10 b1	0.32	0.31	0.31	0.33	0.32	0.30	0.30	0.28	0.30	0.65	0.30	0.39	0.32	0.39	0.30
10 b2	0.34	0.36	0.34	0.36	0.30	0.32	0.33	0.38	0.33	0.70	0.36	0.43	0.36	0.42	0.32
NIST reference															
	8 4	C 1	D 5	E 6	F 1	н 2	J 7	L 8	M 6	Q 10	S 3	U 9	X 3	Y 6	Z 5
	-	-		· ·	•	-	,							· ·	
Result	1	1	1	1	1	1	1	1	1	1	1	~	1	×	~

Identification 14/15

SUMMARY

Overview

- Methodology
- Results

Future

Conclusions

Open questions **?**

- influence of IC extraction template & it's automation
- influence of IC comparison parameter
- optimum 'potential match' criteria
- statistical studies & error rates

Open questions **?**

- influence of IC extraction template & it's automation
- influence of IC comparison parameter
- optimum 'potential match' criteria
- statistical studies & error rates

More studies are required on

- damaged or fragmented bullets
- different bullet types

Open questions **?**

- influence of IC extraction template & it's automation
- influence of IC comparison parameter
- optimum 'potential match' criteria
- statistical studies & error rates

More studies are required on

- damaged or fragmented bullets
- different bullet types

Adapt methodology & SensoMATCH to Cartridge cases

We're ready to help

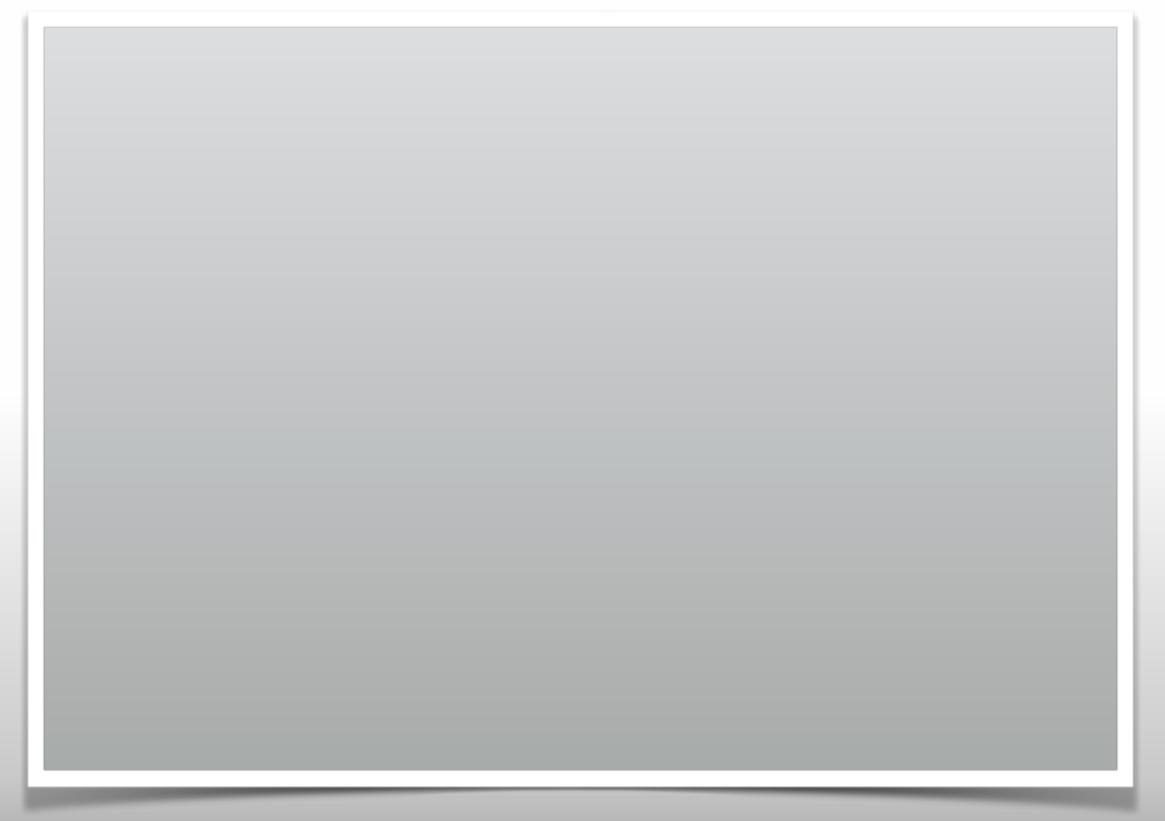
Open questions **?**

- influence of IC extraction template & it's automation
- influence of IC comparison parameter
- optimum 'potential match' criteria
- statistical studies & error rates

More studies are required on

- damaged or fragmented bullets
- different bullet types

Adapt methodology & SensoMATCH to Cartridge cases


SUMMARY

Overview

- Methodology
- Results
- Future

Conclusions

 New methodology for for bullet analysis using highresolution optical 3D surface metrology: separating IC extraction from IC comparison streamlines batch comparison tasks & allows lighter databases

- New methodology for for bullet analysis using highresolution optical 3D surface metrology: separating IC extraction from IC comparison streamlines batch comparison tasks & allows lighter databases
- 2. **Customizable IC extraction template** (pristine cooper bullets)

- New methodology for for bullet analysis using highresolution optical 3D surface metrology: separating IC extraction from IC comparison streamlines batch comparison tasks & allows lighter databases
- 2. **Customizable IC extraction template** (pristine cooper bullets)
- 3. Application of well know **IC comparison template**: mean profile **CCF_{max}**

- New methodology for for bullet analysis using highresolution optical 3D surface metrology: separating IC extraction from IC comparison streamlines batch comparison tasks & allows lighter databases
- 2. **Customizable IC extraction template** (pristine cooper bullets)
- 3. Application of well know **IC comparison template**: mean profile **CCF_{max}**
- 4. Study of automated bullet comparison scores: Max, CMA and **SAM** = **new composite score**

- New methodology for for bullet analysis using highresolution optical 3D surface metrology: separating IC extraction from IC comparison streamlines batch comparison tasks & allows lighter databases
- 2. **Customizable IC extraction template** (pristine cooper bullets)
- 3. Application of well know **IC comparison template**: mean profile **CCF_{max}**
- 4. Study of automated bullet comparison scores: Max, CMA and **SAM = new composite score**
- SensoMATCH bullet comparison engine solves J. Hamby test in 4 seconds. New tool for R&D (easy, flexible & open)

Than you for your attention!

Cristina Cadevall cadevall@sensofar.com

come & visit us at Sensofar LLC <u>www.sensofar-us.com</u> Exhibition hall Workshop on Thursday 2nd June at 1pm

